TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL AND DIRECT

 SUPPORT MAINTENANCE MANUALRADIO TRANSMITTER
(T-1373/TRQ-35(V))
MODEL TCS-4B
(NSN5820-01-005-4248)

HEADQUARTERS, DEPARTMENT OF THE ARMY

$+$

5
SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

1DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

IF POSSIBLE, TURN OFF THE ELECTRICAL POWER

IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH OR LIFT THE PERSON TO SAFETY USING A WOODEN POLE OR A ROPE OR SOME OTHER INSULATING MATERIAL

SEND FOR HELP AS SOON AS POSSIBLE

5

AFTER THE INJ URED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

WARNING

is used in the operation of this equipment

DEATH ON CONTACT
may result if personnel fail to observe safety precautions
Never work on electronic equipment unless there is another person nearby who is familiar with the operation and hazards of the equipment and who is competent in administering first aid. When the technician is aided by operators, he must warn them about dangerous areas.

Whenever possible, the power supply to the equipment must be shut off before beginning work on the equipment. Take particular care to ground every capacitor likely to hold a dangerous potential. When working inside the equipment, after the power has been turned off, always ground every part before touching it.

Be careful not to contact high-voltage connections or 115 volt ac input connections when installing or operating this equipment.

Whenever the nature of the operation permits, keep one hand away from the equipment to reduce the hazard of current flowing through the body.

Warning: Do not be misled by the term "low voltage." Potentials as low as 50 volts may cause death under adverse conditions.

For Artificial Respiration, refer to FM 21-11.

SAFETY SUMMARY

The following are general safety precautions that are not related to any specific procedures and therefore do not appear elsewhere in this publication. These are recommended precautions that personnel must understand and apply during many phases of operation and maintenance.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must at all times observe all safety regulations. Unless specifically directed by this manual, do not replace components or make adjustments inside the equipment with any power supply turned on. Under certain conditions, dangerous potentials may exist in the power supplies when the power control is in the off position. To avoid casualties, always remove power and discharge and ground a circuit before touching it.

DO NOT SERVICE OR ADJUST ALONE

Under no circumstances should any person reach into or enter the enclosure for the purpose of servicing or adjusting the equipment except in the presence of someone who is capable of rendering aid.

RESUSCITATION - FIRST AID
Each person engaged in electrical operations will be trained in first aid, partitularly in the technique of mouth to mouth resuscitation and closed chest heart massage. (FM 21-11).

The following warnings appear in this volume, and are repeated here for emphasis.

$\overline{\text { WARNING }}$

A 3-wire (line, neutral, and safety qround) AC line power connection is required when operating the equipment. If a 3 -wire safety grounded AC power receptacle is not available, a separate ground wire must be installed from the chassis ground to an earth ground. Without an adequate ground, the equipment chassis and frame will float to a dangerously high potential. pages 2-2 and 3-2)

WARNING

In the performance of some maintenance procedures, it is necessary to have the equipment energized and dust covers removed. Extreme care must be exercised in making internal measurements or adjustments since potentially lethal voltages are present. page 5-2

WARNING

Use extreme care when making internal adjustments with power on. Potentially lethal voltages are present in the transmitter. (page 5-5)

Abstract

WARNING GASES GENERATED BY CHARGING BATTERIES Extreme caution must be taken when making connections for the purpose of testing, charging, or repairing batteries that are charging or have been recently removed from charging. Such batteries probably will be gassing and the slightest spark, caused by a short circuit, can cause the battery to explode. Personnel working with these batteries are urged to wear a pair of tight fitting goggles ,or better still, the newer types of plastic mask which covers the entire face.

Open frames, cigarettes, radio transmitters, generating sets, open-cage electric motors, or any other type of equipment that may cause sparks, must be kept clear of the charging line.

$\overline{\text { WARNING }}$

Lifting heavy equipment incorrectly can cause serious injury. Do not try to lift more than 35 pounds by yourself. Get a helper. Bend legs while lifting. Don't support heavy weight with your back.

FOREWORD

Different versions of the TCS-4B have been manufactured, are currently in use, and are described in this technical manual. Functionally and operationally, all versions are the same. The differences between versions are in parts selection, changes to circuit card assemblies, and the attendant changes to higher assembly part numbers. In most cases, two-way interchangeability is possible at the major component (unit) and module assembly level (paragraph 14).

Units and assemblies of the TCS-4B are differentiated either by serial number or part number. Early units and assemblies are serial numbered 400100 and before; later units and assemblies are serial numbered 400101 and on. In some later units, different part numbered assemblies are used.

Text paragraphs and figures are annotated to denote applicability to particular serial or part numbered units and assemblies. The same notation is reflected in the table of contents and list of illustrations. Absence of a restrictive notation means the text /illustration applies to all versions of the TCS-4B.

HEADQUARTERS
DEPARTMENT OF THE ARMY Washington, DC, 15 January 1986

OPERATOR'S, ORGANIZATIONAL, AND DIRECT SUPPORT MAINTENANCE MANUAL

RADIO TRANSMITTER
MODEL TCS-4B
T-1373/TRQ-35 (v)
(NSN 5820-01-005-4248)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN : AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007.

In either case, a reply will be furnished direct to you.

TABLE OF CONTENTS

Section Page
WARNINGS A
FOREWORD E
0 GENERAL 0-1
$0-1$ Scope 0-1
Consolidated Index of Army Publications and Blank Forms 0-1
Maintenance Forms, Records and Reports 0-1
Reporting Equipment Improvement Recommendations (EIR) $0-1$
Administrative Storage 0-1
Destruction of Army Electronics Materiel 0-1
1 1-1
1-11-3
Introduction 1-1
General Description 1-1
1024 Transmit Sweep Generator 1-3
5018 Power Amplifier 1-3
4011 Filter/Diplexer 1-3
Equipment Supplied 1-3
Equipment Required But Not Supplied 1-4
Specifications 1-4
Related Publications 1-4

TABLE OF CONTENTS - Continued

Section Page
2
2-12-32-62-7
INSTALLATION 2-1
Introduction 2-1
Unpacking and Inspection 2-1
Installation Requirements 2-1
General 2-1
Rack Mounting 2-1
Bench Mounting 2-1
Environmental Case Enclosure 2-2
Power Connection 2-2
Line Voltage 2-2
Power Cable 2-6
Cables and Connectors 2-6
Battery Installation 2-6
Non-Rechargeable Battery Supply (P/N 6025-1008) 2-6
Rechargeable Battery Supply (P/N 6025-1018) 2-6
Post-Installation Checkout 2-6
Storage and Reshipment 2-7
Storage 2-7
Reshipment 2-7
OPERATION 3-1
Introduction 3-1
Controls and Indicators 3-1
Operating Instructions. 3-1
General 3-1
Initial Control Settings and Start-Up Procedures 3-2
Normal Operation 3-5
Standby Power 3-6
Shutting Down the Transmitter 3-6
THEORY OF OPERATION 4-1
Introduction 4-1
General 4-1
Functional Description 4-1
Block Diagram Description 4-1
Transmit Sweep Generator 4-1
Power Amplifier 4-2
Filter/Diplexer 4-2
1024 Transmit Sweep Generator -Unit 1 4-4
Frequency Standard (S/N 400101 and on) 4-4
Sweep Synthesizer (P/N 5030-1001 only) 4-4
Sweep Synthesizer (P/N5030-1101) 4-7
Synthesizer 4-7
Down Converter 4-10
Sweep Programner 4-10
Transmit Logic 4-11
Numeric Display and Driver 4-12
Primary Power Supply 4-12
Standby Battery Supply (1A4) (P/N 6025-1008) 4-13

TABLE OF CONTENTS - Continued

Rechargeable Standby Battery Supply (1A 4) (P/N 6025- 1018) 4-13
5018 Power Amplifier - Unit 2 4-14
32 MHz Low Pass Filter 4-14
Power Amplifier 4-14
5018 Power Supply (S/N 400101 and on) 4-14
4011 Filter/Diplexer-Unit3. 4-15
Filter Set (S/N 400101 and on) 4-15
Filter Decode 4-16
Diplexer 4-16
4011 Power Supply 4-17
Frequency Standard (S/N 400100 and before) 4-17
Switching Regulator (S/N 400100 and before) 4-17
Programmer (S/N400100 and before) 4-18
Test Circuit (S/N400100 and before) 4-18
Frequency Counter (S/N 400100 and before) 4-19
Frequency Blanker (S/N 400100 and before) 4-19
5018 Power Supply (S/N 400100 and before) 4-19
Filter Set (S/N400100 and before) 4-20
MAINTENANCE
Introduction 5-1
Test Equipment 5-1
Preventive Maintenance 5-1
Corrective Maintenance 5-2
Troubleshooting Procedures 5-2
Overvoltage Protection 5-5
Overheating Protection 5-5
Adjustment Procedures 5-5
General 5-5
1024 Power Supply Adjustment (S/N 400101 and on) 5-5
Frequency Standard Adjustment 5-6
5018 Power Supply Adjustments 5-6
4011 Power Supply Adjustments 5-6
AC Input Adjustment 5-6
Performance Test Procedures 5-7
General 5-7
RF Power Test 5-7
Frequency Test 5-9
DC Power Supply Tests 5-10
1024 (Unit l) Power Supply Test 5-10
Standby Battery Supply Test 5-10
Battery Charger Adjustment (for Battery AssemblyP/N6025-1018)5-14
5018 (Unit 2) Power Supply Test 5-16
4011 (Unit 3) Power Supply Test 5-17
Harmonics/Spurious Response Test 5-17
Wide Bandwidth Measurement 5-21
Narrow Bandwidth Measurement 5-21
Frequency Standard Calibration 5-22

TABLE OF CONTENTS - Continued
Section Page
5-34 Calibration Requirements 5-22
5-35
5-36
5-37
5-38
5-39
5-40
5-41
6 WIRE LISTS . 6-1
6 WIRE LISTS . 6-1
5-22
Calibration Procedure
1024 Power Supply Adjustments (S/N 400100 and before) 5-23
+5V B Regulation . 5 5-23
+5V B Regulation . $\frac{5}{5-23}$
AC Input Adjustment. $\frac{5-23}{5-23}$
5018 Power Supply Adjustment (S/N 400100 and before) $\frac{5}{5-25}$
5018 Power Supply Adjustment (S/N 400100 and before) $\frac{5-23}{5-25}$
+27.1 VDC Regulators .
AC Input Adjustment
5-25
6-1 Wire List Index
6-1

APPENDIX

A REFERENCES A-1
B MAINTENANCE ALLOCATION B-1
Section
I Introduction B-1
II Maintenance Allocation Chart B-4
III Tool and Test Equipment Requirements B-5
IV Remarks B-6
APPENDIX
(C) COMPONENTS OF END ITEM AND BASIC ISSUE ITEMS $\mathrm{C}-1$
Section
I Introduction. C-1
II Integral Components of End Item C-3
III Basic Issue Items (Not applicable)
APPENDIX
D ADDITIONAL AUTHORIZATION LIST D-1
Section
I Introduction D-1
II Additional Authorization List D-2
APPENDIX
E EXPENDABLE SUPPLIES AND MATERIAL LIST (Not applicable)
FO BLOCK DIAGRAMS AND SCHEMATIC DIAGRAMS

LIST OF ILLUSTRATIONS

Figure		Page
1-1	TCS-4B Transmitter	1-2
2-1	Rack Mounting for Transmitter Units	2-3
2-2	Transmitter Dimensions	2-4
2-3	Upper 5018 Chassis Plate Showing Internal Cable Connectors (2A1)	2-5
2-4	Power Supply (2A2) Line Voltage Switch	2-5
2-5	Transmitter Cable Connections	2-8
3-1	Controls and Indicators	3-8
4-1	Transmitter Functional Block Diagram	4-3
4-2	Sweep Synthesizer Functional Block Diagram (Part Number 5030-1001)	4-6
4-3	Sweep Synthesizer (1A1) Functional Block Diagram (Part Number 5030-1101)	4-8
4-4	Simplified Block Diagram of Synthesizer CCA 1A1A1 (5035-2001 only)	4-8
5-1	Frequency Standard Crystal Oscillator Adjustment . . .	5-7
5-2	Power Amplifier Test Setup.	5-9
5-3	RF Power Troubleshooting.	5-11
5-4	Frequency Test Setup .	5-13
5-5	Test Point Verification for Transmit Logic Module 1A2 ($\mathrm{S} / \mathrm{N} 400101$ and on)	5-15
5-6	Test Point Verification for Synthesizer Module lA1 (P/N 5030-1001 Only)	5-18
5-7	Test Point Verification for Synthesizer Module lA1 (P/N 5030-1101 Only)	5-19
5-8	Test Point Verification for Filter Decode Module 3A2A2	5-20
5-9	Harmonics/Spurious Response Test Set-Up	5-24
5-10	Test Point Verification for Transmit Logic 1A2 (S/N 400100 and before)	5-26
FO-1	1024 and 5018 Block Diagram (3 sheets)	
FO-2	4011 Block Diagram	
FO-3	Schematic Diagram, 5 MHz Buffer (6061-2001) (S/N 400101 and on)	
FO-4	Schematic Diagram, Switch Regulator (6061-2002) (S/N 400101 and on)	
FO-5	Schematic Diagram, Synthesizer Converter (5030-2001) (6 sheets)	
FO-6	Schematic Diagram, Microphage Synthesizer (5030-2002) (5 sheets)	
FO-7	Synthesizer Block Diagram (5035- 2001)	
FO-8	Schematic Diagram, Synthesizer (5035-2001) (8 sheets)	
FO-9	Down Converter Block Diagram (5035-2002)	
FO-10	Schematic Diagram, Down Converter (5035-2002) (3 sheets)	
FO-11	Sweep Programmer Block Diagram (5035- 2003)	
FO-12	Schematic Diagram, Sweep Programmer (5035-2003) (4 sheets)	
FO-13	Wiring Diagram, Sweep Synthesizer Assy (5030-1101)	
FO-14	Schematic Diagram, Programmer (1024-2008) (S/N 400101 and on) (4 sheets)	
FO-15	Schematic Diagram, Frequency Counter/Blanker (1024-2009) (S/N 400101 and on) (3 sheets)	

LIST OF ILLUSTRATIONS - Continued

Figure
Page
FO-16 Schematic Diagram, Numeric Display (6025-2011)
FO-17
Schematic Diagram, Display Driver (6025-2012)
Schematic Diagram, 1024 Power Supply (1024-1007) (2 sheets)
Schematic Diagram, Rechargeable Battery Supply (6025-1018)
Schematic Diagram, 1024 Panel Controls
Schematic Diagram, 5018 Power Amplifier (5018-1001) (4 sheets)
Schematic Diagram, Power Amplifier Enclosure (5018-1003)
Schematic Diagram, 5018 Power Supply (5018-1002)
Schematic Diagram, 27 VDC Regulator for 5018 Power Supply (5018-1008)
FO-25 Schematic Diagram, Filter Set Assy (4011-1004) (S/N 400101 and on) (2 sheets)
FO-26 Schematic Diagram, Filter Set Assy (4011-1104) (2 sheets)
FO-27 Schematic Diagram, Filter Decode Assy (4011-1007) (4 sheets)
FO-28
FO-29
FO-30
Schematic Diagram, Diplexer, Toroid Assy (4011-1005)
Schematic Diagram, 4011 Power Supply (4011-1008)
Schematic Diagram, 5 MHz Distributive Amplifier (6025-2008) (S/N 400100 and before)
FO-31 Schematic Diagram, Switch Regulator (6025-2009) (S/N 400100 and before)
FO-32 Schematic Diagram, Programmer (1024-2002) (S/N 400100 and before) (2 sheets)
FO-33 Schematic Diagram, Frequency Counter/Blanker (1024-2003) (S/N 400100 and before)
FO-34 Schematic Diagram, 5018 Power Supply (5018-1002) (S/N 400100 and before) (3 sheets)
FO-35 Schematic Diagram, Filter Set Assy (4011-1001) (S/N 400100 and before) (2 sheets)

LIST OF TABLES

Table
Page

TCS-4B Specifications and Characteristics 1-5
Transmitter Interconnect Cables
2-3
Transmitter Connectors
2-9
Controls and Indicators . 3-9
Test Equipment Required . 55-1
Preventive Maintenance Schedule 55 5-2
Troubleshooting Guide . 5-4

SECTION
 0

GENERAL

 manual provides instructions for installation, operation, and maintenance for operator, organizational, and direct support repair personnel.

0-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS. Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes or additional publications pertaining to the equipment.

0-3. MAINTENANCE FORMS, RECORDS, AND REPORTS.
a. Report of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA Pam 738-750 as contained in Maintenance Management Update.
b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed in AR 735-11-2/DLAR 4140.55/ NAVMATINST 4355.73A/AFR 400-54/MCO 4430. 3F.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/ NAVSUPINST 4610.33C/AFR 75-18/MCO P4610. 19D/DLAR 4500.15.

0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR). If your Radio Transmitter T-1373/TRQ-35(V) needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5007. We'll send you a reply.

0-5. ADMINISTRATIVE STORAGE. Administrative Storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness. Disassembly and repacking of equipment for shipment or limited storage are covered in paragraph 2-22.
$0-6$. DESTRUCTION OF ARMY ELECTRONICS MATERIEL. Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

SECTION 1

GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual provides operating and service instructions for the TCS-4B transmitter. The information is presented in seven sections. Section 1 provides a brief description of the equipment and operating specifications. Unpacking instructions, site requirements, cabling data and installation instructions are included in Section 2. Section 3 provides information on operator controls and indicators and describes operating procedures. In Section 4 are functional descriptions of transmitter circuits. Section 5 describes preventive and corrective maintenance procedures for the transmitter and gives a performance verification checkout. Section 6 contains the wire lists for reference during maintenance. All oversize drawings, such as schematics, are grouped in the back of this manual as a foldout (FO) section.

1-3. GENERAL DESCRIPTION
1-4. The TCS-4B transmitter (fiqure 1-1) is one part of an HF Radio Sounder Set used for frequency management of HF circuits. It is used at one end of an HF radio circuit and transmits a CW signal which is swept in an upward linear ramp between $2-16$ or $2-30 \mathrm{MHz}$ in 4 minutes and 40 seconds. The RCS-4B radio receiver is a companion unit to the TCS-4B transmitter and is located at the other end of the circuit. When properly synchronized with a TCS-4B, the RCS-4B receives all radio energy emitted by the transmitter that ionospheric propagation permits. One RCS-4B can be synchronized with up to three TCS-4B transmitters.

1-5. A third part of the set is the Model RSS-4 Spectrum Monitor. The RSS-4 permits a frequency manager to know the occupancy of all 6 kHz channels in the $2-30$ MHz band for the last 30 minutes. Thus, the TCS-4B/RCS-4B sounder system tells the frequency manager what band of frequencies will propagate over a given path, and the RSS-4 indicates which channels within the propagating band are free from interference.

1-6. The TCS-4B has up to 100 watts RF output power for transmission directly by a broadband antenna (required but not supplied). The TCS-4B signal can also be diplexed onto the same antenna employed for the user's communication transmitter (up to 2.5 kW PEP) using the diplexer assembly that is part of the TCS-4B. In the diplexed mode, only 2 percent of the TCS-4B power (2 watts) is coupled onto the user's antenna; the remaining power (along with about 2 percent of the communications transmitter power) goes to an internal dummy load. If the communications transmitter is used on the same circuit being sounded by the TCS-4B, then the propagation data obtained in the sounding accounts for all radiation characteristics of the user's antenna.

1-7. The TCS-4B transmitter may be programmed to blank transmissions in up to sixteen bands, up to 60 kHz wide. The center blanking frequency of each band is programmed via front panel thumbwheel switches. Frequency blanking is usually not an important consideration when operating in a diplexed configuration because of the low radiated power. However, it is a useful feature to reduce potential interference effects on communications receivers co-located with the TCS-4B transmitter.

FIGURE 1-1. TCS - 4B Transmitter.

1-8. The transmitter consists of three modular units mounted in an environmentally protective case. The units are the 1024 transmit sweep generator (unit 1), the 5018 power amplifier (unit 2), and the 4011 filter/diplexer (unit 3).

1-9. 1024 TRANSMIT SWEEP GENERATOR. This unit controls and generates the TCS-4B sweep-frequency signal. The sweep signal originates from a precision quartz oscillator frequency standard. From this source, a linearly upward frequency ramp is developed by means of decade counters which program a frequency synthesizer. The synthesizer uses a phase-locked loop technique to control a variable-frequency oscillator whose output is locked to the internal frequency standard. Since both transmitter and receiver use identical sweep generator circuits based on identical frequency standards, only synchronization of sweep start times is required to ensure reception of the sweeping signal. The necessary synchronization is performed at the beginning of operations and is fully explained in the receiver manual TM 11-5820-917-13. Once synchronization is accomplished, the transmitter and receiver clocks are essentially linked in time. To safeguard this link, a standby battery power supply is included in the transmit sweep generator unit. The standby battery supply is automatically switched on in the event of primary AC line failure and provides power for the frequency standard, timing circuit, and frequency blanker memory. A new battery supply will sustain timing and memory functions for approximately 24 hours. A front panel pushbutton switch initiates a test of the sweep generator, checking power supply voltages, proper synthesizer lock, and suitable battery voltage.

1-10. 5018 POWER AMPLIFIER. The power amplifier receives approximately 1 mW (0 dBm) of signal power from the transmit sweep generator and linearly amplifies it to approximately 100 watts. The power amplifier uses four parallel transistor amplifiers whose outputs are combined to produce a near constant output ($\pm 3.0 \mathrm{~dB}$ max) over the entire operational frequency band ($2-30 \mathrm{MHz}$). A 32 MHz low pass filter is incorporated into the power amplifier which effectively blocks all frequencies above 32 MHz . Other filtering circuits are included in the filter diplexer unit.

1-11. 4011 FILTER/DIPLEXER. This unit contains the circuits necessary to perform sequential, half-octave, low-pass filtering of the TCS-4B signal as it progresses through the frequency sweep. The low-pass filtering attenuates harmonics 60 dB below the fundamental signal. In addition, the unit incorporates a 2.5 kW PEP (standard rating) diplexer, which, when selected, combines approximately 2 watts of TCS4B RF output with the communications transmitter output. The balance of the TCS4 B power (98 W) is absorbed in a 50 ohm dummy load mounted on the rear panel of the 4011. Filtering of the sweep frequency is achieved by detection of the frequency as the sweep progresses followed by sequential activation of each of eight half-octave filters ($2-2.8 \mathrm{MHz}, 2.8-4.0 \mathrm{MHz}$, etc.). The 4011 unit also contains circuits for measuring the forward or reflected sweep frequency output power of the TCS-4B. The measured power is displayed on a meter on the 1024 front panel.

1-12. EQUIPMENT SUPPLIED
1-13. As supplied, the TCS-4B transmitter includes the following items:
a. Transmit Sweep Generator, Unit 1
b. Power Amplifier, Unit 2
c. Filter/Diplexer, Unit 3

P/n 1024-1000 or P/n 1024-1100
P/N 5018-1000
P/N 4011-1000 or 4011-1120

| d. Environmental Shipping Container | P/N 6000-3110-2 |
| :--- | :--- | :--- |
| e. Interconnecting Cables and Power Cable | Refer to table 2-1. |

1-14. Different part numbered units (Units 1 and 3) may be included in a TCS-4B. As a complete unit, they are fully two-way interchangeable. With one exception, module assemblies within units are also two-way interchangeable. The different part numbered modules used in the units and their interchangeability are as follows:

UNIT 1	1024-1000		1024-1100
1. Sweep Synthesizer Assy	5030-1001	Interchangeable with	5030-1101
2. Standby Battery Supply Assy	6025-1008	NOT Interchangeable with	6025-1018
UNIT 3	4011-1000		4011-1120
3. Filter Set	4011-1004	Interchangeable with	4011-1104

1-15. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-16. Proper operation of the TCS-4B transmitter requires use of a broadband HF antenna which is not supplied. No damage to the TCS-4B will result if a narrowband antenna is employed. However, the received signal power vs. frequency at the RCS-4B receiver may be so limited by the transmitter antenna radiation loss that an accurate picture of ionospheric propagation conditions may not be possible. All cables to connect the TCS-4B to the antenna must also be supplied. The TCS-4B employs a type $H N$ connector for $R F$ output. All connectors and adapters from the HN output to the user's antenna cable must be supplied. Test equipment for servicing and fault isolation of the TCS-4B are not supplied. Recommended items are listed in Section 5.

1-17. SPECIFICATIONS

1-18. Table 1-1 lists the technical specifications and tested performance characteristics of the TCS-4B transmitter.

1-19. RELATED PUBLICATIONS

1-20. Information in the following publications is relevant to operation and service of the transmitter.

Title
Illustrated Parts Breakdown, TCS-4B Transmitter Operation and Maintenance Instructions RCS-4B Receiver
RCS-4B Receiver

Number

TM 11-5820-918-23P

TM 11-5820-917-13

Table 1-1. TCS-4B Specifications and Characteristics

SPECIFICATIONS	
Frequency Range (Sweep Limits)	$2-16 \mathrm{MHz}$ and $2-30 \mathrm{MHz}$, selectable by front panel switch.
Output Waveform	Linear FM- Cw
Sweep Rates	```50 kHz/sec in 2-16 MHz range. 100 kHz/ sec in 2-30 MHz range. Selected auto- matically by frequency range switch.```
Transmitting Times	Automatic sweep start at any of 12 times, spaced 5 minutes apart each hour; each time selectable as transmit or no transmit. Sweep to be manually initiated, terminated, or reset at any time.
Output Power	0.2 W and 2.0 W from diplexer, $\pm 3 \mathrm{~dB}$, selectable by front panel switch; 10 W or 100 W non-diplexed output, $\pm 3 \mathrm{~dB}$, selectable by front panel switch.
Diplexer Power Rating	2.5 kW PEP from communications transmitter, to a 50 ohm antenna with less than 2:1 VSWR
Diplexer Insertion loss	Less than 0.5 dB in 50 ohm line
Change in Long-Term Timing and Frequency	Less than $5 \times 10^{-9} / 24$ hours After a 12 hour warmup.
Standby Power	24 hours, minimum, to maintain timing synchronization in a $23^{\circ} \mathrm{C}$ ambient temperature
Noise and Spurious (non-harmonic)	In conformance with MIL-STD-461A, paragraph 6.3.3 for diplexed output. Greater than 55 dB down from fundamental.
Harmonics	Greater than 60 dB down from fundamental
Sweep Linearity	Sufficient to obtain 100 microsecond or better time-delay resolution with -30 dB sidelobe level.
Primary Power	115/230 VAC $\pm 10 \% ; 47-440 \mathrm{~Hz} ; 1500$ watts
Temperature	0 to $50^{\circ} \mathrm{C}$ operating; -40 to $71^{\circ} \mathrm{C}$ nonoperational and storage

Table 1-1. TCS-4B Specifications and Characteristics - Continued

Relative Humidity (non-condensing)	Up to 85\% operating; up to 96\% non- operating and storage
Physical Dimensions	See fiqure 2-2 for dimensions

SECTION 2

INSTALLATION

2-1. INTRODUCTION

2-2. This section contains instructions for installing the transmitter and for making all necessary cable interconnections before putting the system into use. Details on storage and reshipment are also included.

2-3. UNPACKING AND INSPECTION
2-4. The transmitter is shipped from the factory in a fully assembled condition within its environmentally protective case. For shipment, it is enclosed in a moisture resistant barrier material with dessicant and humidity indicator and packed in a wooden box. The gross weight of the transmitter in its shipping container is less than 425 lbs. When removed from the shipping container, the transmitter can be transported by forklift to its operating site. The shipping containers should be inspected for external damage, and if damage is evident, the carrier should be notified.

NOTE

The transmitter case is marked to indicate position for the fork lifts.
2-5. To unpack the TCS-4B, remove the top of the shipping container. Care should be exercised in removing nails and wood panels since the container is reusable. Roll the shipping container over so the top is on the bottom. Lift the container straight up off the TCS-4B. The transmitter (now upside down) should be rolled upright. Check all items against the packing list. The shipping container and associated packing material should be retained for possible use in reshipment or storage of the transmitter.

2-6. INSTALLATION REQUIREMENTS

2-7. GENERAL. The transmitter operates satisfactorily within temperature limits of 0 to $50^{\circ} \mathrm{C}$ and up to 85% relative humidity. For long term operational stability, the equipment should not be exposed to excessive shocks (exceeding $15 \mathrm{~g}^{\prime} \mathrm{s}$), high dust levels, or extreme fluctuations in temperature. The 1024 and 5018 units of the transmitter have internally mounted cooling fans. The fan on the 1024 unit exhausts through a vent on the left side, and the fan on the 5018 unit exhausts through a grill on the rear panel. Adequate clearance must be allowed for the free flow of air to both units.

2-8. RACK MOUNTING. All units have front panels designed for standard 19-inch rack mounting. If rack mounted, the units should be adequately supported by either rack slides or weight supporting brackets mounted between the rack and the rear of the units. Refer t fiqure 2-1 for suggested mounting details.

2-9. BENCH MOUNTING. For bench mounting, the units may be mounted one above the other, or side by side, within the limits of the cable lengths supplied. When mounted one above the other, the three units require a suitable packing shim (approximately $1 / 2$ inch thick) to maintain proper alignment of the front panels.

2-10. ENVIRONMENTAL CASE ENCLOSURE. The TCS-4B is supplied in an environmental case. This configuration is particularly suitable for shock or vibration prone environments. The container comes complete with four carrying handles for convenient local transportation. In addition, front and rear doors remove easily for access to equipment. The external dimensions and weight of the unit are shown in figure 2-2. Front and rear covers of environmental case must be removed to provide adequate ventilation when operating the TCS-4B.

2-11. POWER CONNECTION

2-12. LINE VOLTAGE. The TCS-4B transmitter may be operated from either 115 or 230 volt $(\pm 10 \%)$, 47 to 440 Hz power lines. A toggle switch mounted near the power supply, (refer to figure 2-4) of each of the three units comprising the transmitter permits easy conversion from either voltage. Access to the switch is obtained by removing each unit from the case and removing the top cover of the unit. In the 5018, the top subchassis plate (see fig. 2-3) must also be removed. The switch will be visible from the top and switch positions are marked 115 and 230 . Figure $2-4$ shows the switch location on the power amplifier unit and is typical for the other units.

WARNING

A three-wire (line, neutral, and safety ground) AC line power connection is required when operating the equipment. If a 3 -wire safety grounded AC power receptacle is not available, a separate ground wire must be installed from the chassis ground to an earth ground. Without an adequate ground, the equipment chassis and frame will float to a dangerously high potential.

NOTE

Before connecting AC power to unit, be sure the correct fuse is installed as follows:

Unit
1024
5018
4011

115V
1 A
15 A
1 A

$$
230 \mathrm{~V}
$$

1/2 A
8 A
1/2 A

Type
Normal Blow Slow Blow Normal Blow

Make sure toggle switch for each unit is in the correct position.

Table 2-1. Transmitter Interconnect Cables

Cable designation	BR cable part number	From	To	Remarks
W1	$8120-4000-72$	1 J2	$3 J 3$	Control of 4011 direct/diplex relay and 4011 RF power sensor output to 1024
W2	$8120-5000-72$	$3 J 5$	$1 J 1$	1024 AC Power in from 4011
W3	$8120-5001-48$	$3 J 4$	$2 J 4$	5018 AC Power in from 4011
W4	$8120-0201-120$	AC Power	$3 J 6$	AC Line Power In

Connection from the user's communications transmitter to the 4011 front panel is into J8 (Fiqure 2-5, bottom). TCS-4B output is from J7 to the antenna. J7 and J8 are type HN coaxial connectors. The mating cable should use an HN plug, such as UG-59 or equivalent.

FIGURE 2-1. Rack Mounting for Transmitter Units.

FIGURE 2-2. Transmitter Dimensions.

FIGURE 2-3. Upper 5018 Chassis Plate Showing Internal Cable Connectors (2A1).

FIGURE 2-4. Power Supply (2A2) Line Voltage Switch,

2-13. POWER CABLE. The transmitter is provided with a detachable line cord (8 feet long) having a standard 15 ampere plug NEMA 5-15P (2 blades with round grounding pin) at the supply end. Exposed portions of the equipments are grounded through the round pin of the plug for safety. A non-grounded two blade receptacle should not be used without use of a grounding-type connector adapter.

2-14. CABLES AND CONNECTORS
2-15. A list of cables used with the transmitter is given in table 2-1. Connectors used are given in table 2-2. In addition, cable connections are illustrated in figure 2-5.

2-16. BATTERY INSTALLATION

2-17. Two different types of standby battery supplies are used in the TCS-4B. Some transmitters have a non-rechargeable battery supply (P / N 6025-1008) that uses standard D-cell batteries. Other transmitters have a rechargeable supply (P/N 6025-1018) that includes an integral charging circuit and uses sealed lead acid cells. Refer to either paragraph 2-18 br 2-19 as applicable.

2-18. NON-RECHARGEABLE BATTERY SUPPLY (P/N 6025-1008). The standard D-cell batteries may or may not be installed in the transmitter on arrival, depending on shipping destination and enroute climate, etc. With new batteries installed, the standby supply provides operating power for up to 24 hours (at $23^{\circ} \mathrm{C}$). To install batteries, proceed as follows:
a. Loosen two captive thumbscrews at front of battery drawer on 1024 front panel.
b. Pull out battery drawer entirely.
c. Remove two screws at top of rear of container and slide battery cover out from rear.
d. If existing batteries are being replaced, pry center front contact spring back and remove center tube. Repeat for other two tubes.
e. Replace all batteries in + to - sequence and re-insert each tube according to polarity markings on base of container.

2-19. RECHARGEABLE BATTERY SUPPLY (P/N 6025-1018). The rechargeable battery supply is installed for shipment in a drawer located in the front panel of the 1024 unit. Since the battery supply may have discharged during shipment, battery power should not be relied on for the first 12 hours of operation. An internal charging circuit maintains a continuous charge on the battery supply when AC line power to the 1024 is on. After a 12 hour charge (with the 1024 turned on), the battery pack provides standby power for up to 24 hours (at $23^{\circ} \mathrm{C}$). Refer to paragraph 3-15 and 3-16 for additional information.

2-20. POST-INSTALLATION CHECKOUT

2-21. The electrical performance of the transmitter should be verified before being put into normal operation. The performance test described in Section 5 is performed as the post-installation checkout prior to operation.

2-6

2-22. STORAGE AND RESHIPMENT

2-23. STORAGE. The maximum recommended storage environment should not exceed -40 to $71^{\circ} \mathrm{C}$ temperature or 96% humidity. For long term storage, repackaging of the equipment and sealing of the cables into moisture proof bags are recommended. For storage exceeding two days, the shutdown procedures of paragraph 3-15 or 3-16 should be followed.

2-24. RESHIPMENT. The environmental container offers sufficient protection for reshipment of the TCS-4B. The container has bottom rails to facilitate handling with a forklift. The front and rear covers should be in place when moving the unit and extreme care should be taken to avoid damage to the instrument.

FIGURE 2-5. Transmitter Cable Connections.

Table 2-2. Transmitter Connectors

Conn	Part no.	Name	Description
1 J 1	MS3102A-16-10P	A.C. Power	3 Pin Power Receptacle
1J2	348-40E10-12S1	Control	12 Pin Receptacle
1J3	28JS 145-2	R.F. Out	Coaxial Connector, BNC, Jack, Female
1J4	28JS 145-2	1 PPS	Coaxial Connector, BNC, Jack, Female
2 J 1	28JS 145-2	R.F. In	Coaxial Connector, BNC, Jack, Female
2 J 2	28JS 145-2	R.F. Out 10w	Coaxial Connector, BNC, Jack Female
2J3	36000	R.F. Out 100 W	Coaxial Connector, 'N' Type
2J4	MS102A-16-10P	A.C. Line In	3 Pin Power Receptacle
3J1 (F)	UG-61A/U	R.F. Out to Antenna	Coaxial Connector, 'HN' Type
3J2 (F)	UG-61A/U	$\begin{aligned} & \text { R.F. In } \\ & 2.5 \mathrm{~kW} \end{aligned}$	Coaxial Connector, 'HN' Type
$3 \mathrm{J1}$ (R)	28JS 145-2	R.F. In 10W	Coaxial Connector, BNC, Jack, Female
3J2 (R)	36000	R.F. In 100W	Coaxial Connector, 'N' Type
3 J 3 (R)	348-40E10-12S1	Centrol	12 Pin Receptacle
3 J 4 (R)	MS3102A-16-10S	A. C. Line Out to 5018	3 Pin Power Receptacle
3 J 5 (R)	MS3102A-16-10S	A. C. Line Out to 1024	3 Pin Power Receptacle
3J6 (R)	MS3102A-16-10P	A.C. Line In	3 Pin Power Receptacle

NOTE : $\mathrm{F}=$ Front Panel, $\mathrm{R}=$ Rear Panel

3-1. INTRODUCTION
$3-2$. This section provides the basic information required to operate the TCS-4B transmitter. The operating controls and indicators are illustrated, and the function of each control and indicator is described.

3-3. CONTROLS AND INDICATORS

3-4. The controls and indicators required to operate the transmitter are located on the front panel of the transmit sweep generator unit. Individual power on-off switches for control of primary power are located on the front panels of the 1024 and 4011. Operator controls consist of pushbutton switch-indicators and toggle, thumbwheel, or rotary switches. Controls and indicators are illustrate in fiqure 3-1. and functionally described in table 3-1.

3-5. OPERATING INSTRUCTIONS

3-6. GENERAL. The TCS-4B transmitter is normally operated in a fully automatic mode once the transmitter is initially set up and synchronized with an associated, remotely located TCS-4B receiver. Four modes of operation are available: continuous, manual, set, and programmer. Each mode has a particular purpose and provides different functions. A mode of operation can be selected or the mode changed while the transmitter is operating (frequency being swept) without affecting the frequency sweep or system time.
a. Continuous Mode. The continuous mode of operation is intended for use during service test of the transmitter. With the MODE switch in CONT position, the transmitter provides an output that is swept and recycled between the low of 2 MHz and the preset high of either 16 or 30 MHz . The path programmer MINUTES switch and the RESET, START, and STOP switches have no effect on transmitter operations in this mode. If the sweep is stopped, placing the MODE switch in CONT position starts the sweep.
b. Manual Mode. In manual mode, the frequency sweep is controlled by the START, STOP, and RESET switches. This mode is used to reset the frequency sweep at start up and to exercise manual control of transmitter frequency for maintenance purposes. When started, the frequency sweep will advance from 2.00 MHz to the preset high limit and reset to 2.00 MHz . If, during a frequency sweep, the STOP switch is activated, the sweep stops and the transmitter radiates at the fixed freuqency. System time is not affected by actuation of START, STOP, or RESET switches in manual mode; only the frequency sweep is controlled. The RF output of the transmitter is always on in MANUAL mode.
c. Set Mode. In set mode, the transmitter clock can be started, advanced, or reset to zero. Although the STOP switch is illuminated with the MODE switch in SET position, the stop function is not enabled. The path programmer MINUTES switches are active in the SET mode, and the frequency sweep will start automatically at each 5minute interval that is enabled in the same way as described below for the programmer mode. The SET mode can be used for normal, automatic operation; however, since the START, RESET, and ADV TIMER switches are active in this mode, it is a better practice to operate in the programmer mode to prevent accidental reset of the system clock .
d. Programmer Mode. The programmer mode is typically used for normal, automatic operation after the transmitter and associated receiver are synchronized. In this mode, a sweep may be initiated at each 5-minute interval of the hour depending on the position selected for the programmer MINUTES switches. The START, STOP, RESET, and ADV TIMER switches are disabled in this mode. A transmitter frequency sweep is initiated for a particular 5-minute period if the corresponding programmer MINUTES switch is in Up (on) position. The sweep is inhibited for the 5-minute period when the MINUTES switch is in down (off) position. At the end of each clock hour (end of the 55 th minute sweep interval), the cycle automatically repeats.

3-7. INITIAL CONTROL SETTINGS AND START-UP PROCEDURES. In preparation for normal operation of the transmitter, the following control settings are made and start-up procedures performed. Most of the operating controls are located behind the front panel door on the right side of the sweep generator unit. Perform the following procedures:

WARNING

Make sure that the TCS-4B frame is grounded by the three-wire, threeprong power cord or a separate ground strap before operating. If not grounded the TCS-4B frame and exterior panel could be at a potentially dangerous voltage level.
a. Make sure that the BAT switch is in OFF position. The only time that the BAT switch should be $O N$ is when the transmitter is on and synchronized with the receiver, or to test for battery voltage.
b. Set DIRECT/DIPLEX switch to either position depending on the antenna coupling to be used: DIPLEX if the antenna is being shared with a communications transmitter, DIRECT if the antenna is dedicated to the TCS-4B transmitter. The DIRECT/ DIPLEX switch is a locking-type toggle switch. The toggle lever must be pulled out to change position of the switch.
c. Connect antenna cable to 4011 front panel connector (RF Out to Antenna).

CAUTION

Ensure that correct connections to a communications transmitter from the 4011 front panel (RF IN) and from the 4011 front panel to the antenna (RF OUT) are made. Incorrect connections can cause severe damage to the TCS-4B.
d. Set the . 1 PWR/FULL PWR switch to the desired power level. When in DIRECT operation, transmitter output power is nominally 10 watts with the switch in . 1 PWR position; the output is nominally 100 watts with the switch in the FULL PWR position. In the DIPLEX operation the output power is nominally 0.2 watts in the . 1 PWR position or 2.0 watts with the switch in the FULL PWR position. Normally for start up operation, the transmitter is operated in DIRECT, FULL PWR until synchronization is obtained with the receiver. The higher output power in this configuration makes the synchronizatoin procedure easier for the RCS-4B operator. Once proper synchronization is achieved, the transmitter power level and diplexer configuration may be changed to meet operational requirements.
e. Set UPPER FREQ switch to either 16 or 30 to agree with receiver.
f. Press front panel POWER pushbutton switches of 1024 and 4011 ON.
g. Turn off (down position) all PROGRAMMER MINUTES switches on 1024.
h. Place MODE switch in MAN position; then press RESET switch to set frequency sweep at the lower limit of 02.00 on the MHz frequency display.
i. Place MODE switch in SET position; then press RESET, then START, and RESET again to set system time at 00:00 on the MIN /SEC clock display.
j. If frequency blanker is not to be used, set BLKR PROG/RUN switch to PROG. If blanker is to be used, perform the following steps to set up the desired blanking frequencies in memory.
(1) Place BAT switch to ON position.
(2) Set BLKR PROG/RUN switch to PROG.
(3) Set the CHANNEL thumbwheel switch to 0 position. Sixteen storage channels "0" to "15" are available for establishing sixteen discrete blanking frequencies. If only a few blanking frequencies are to be used, any of the storage channels may be selected without regard to sequence.
(4) Set BLANKER FREQ thumbwheel switches to the desired center frequency. The set frequency represents the center of a 60 kHz band during which the transmitter output will be disabled.

NOTE

For transmitters prior to serial number 400100, the blanking band is 20
kHz wide (not 60 kHz).
(5) Prss BLKR STORE switch to enter the set BLANKER FREQ in memory.
(6) The stored frequency should be checked by pressing the BLKR DSPL (display) switch and observing the readout on the MHz frequency display.
(7) Advance CHANNEL thumbwheel switch to next available position.
(8) Repeat steps 4 through 7 to store up to 16 blanking frequencies. If fewer than 16 blanking frequencies are to be stored, program the unused channels to 00.00 MHz.

NOTE

In turning the transmitter power off and then on with the standby power supply off, the blanker frequency memory will store some random numbers. Therefore, it is always necessary to check all channels for the proper setting prior to operation following shutdown.
(9) Place BLKR PROG/RUN switch in RUN position.
k. Allow twenty-minute warm-up for the transmitter frequency standard to stablize.

1. The path programmer MINUTES switches should be set in coordination with the operator of the RCS-4B receiver. The RCS-4B may be operated with up to three different transmitters, but only one at a time. Thus, the MINUTES switches are provided to establish the times that a particular transmitter will be received. For example, transmitter 1 may be set to $00,15,30$ and 45 . Transmitter 2 set at 05,20 , 35 and 50 and transmitter 3 set at $10,25,40$ and 55.
m. In coordination with the operator of the RCS-4B Receiver, synchronize the start of system time. The MODE switch should be in SET position and the START switch pressed at the desired second for sweep start. See the technical manual for the RCS4B (T.O. 31R2-4-470-1) for further details on synchronization.

The ADV TIMER button can be used to set the transmitter quickly to real time (as determined from W WV or similar source). It may also be used to start the transmitter with a timing offset. This is done so that individual transmitters can be distinguished from each other. Follow these steps to begin a sweep with a timing offset:
(1) Determine how much time the start of the sweep is to be offset. For example, the offset is to be 2 minutes and 20 seconds.
(2) Establish the accurate real time by tuning to a time standard (WWV) or using digital watches to note the minutes and second.
(3) Carefully note when the watch or standard reaches 00 seconds of a minute. Note the minute (for example, 16 minutes past the hour).
(4) Count 20 seconds (for this example) on the watch. When it reaches 20 seconds press the START button. The timer display will now start on the 1024.
(5) Press the ADV TIMER button to set the minute counter on the display to the real time (from digital watch or WWV) minus two minutes (for this example). Thus, if it was 16 minutes passed the hour, the ADV TIMER button must be pressed to read 14 minutes on the display.
(6) The transmitter is now offset 2 minutes and 20 seconds after real time. This can be checked by comparing the display with WWV or the digital watch when the display reaches a minute mark.
o. Place BAT switch to ON position.
p. With the transmitter sweeping and the battery supply on, perform a transmitter self test by pressing TEST switch. Two functions are checked.
(1) In the system test, a go/no-go indication is provided for determining operation of the synthesizer and power supplies. If the SYST green indicator lamp lights, operation is correct. If the SYST red lamp lights, a malfunction is indicated. Refer to the maintenance procedures of bection 5 for instructions to correct fault.
(2) (Applicable to units with non-rechargeable battery supply, P/N 6025-1008 only). The condition of the standby battery supply is also checked when the TEST switch is actuated. If only the green BAT test lamp lights, the battery voltage is 23 volts or greater which is the acceptable condition. If both the green and red BAT lamps light, the condition of the battery is marginal but operational (voltage between 18 and 23 volts). If only the red BAT lamp lights, the battery voltage is 18 volts or lower, and the battery (18 alkaline D-cells) must be replaced.
(3) (Applicable to units with rechargeable battery supply, P / N 6025-1018 only). The condition of the battery supply and charging circuit is also checked when the TEST switch is activated. If only the green BAT lamp lights, the battery supply is satisfactory (not fully discharged) and the charging circuit is operating. If the red lamp or both red and green lamps light, the possible indications are: the BAT switch is OFF; the battery supply or charging circuit is malfunctioning; or the battery supply is fully discharged. To check the actual charge of the battery, refer to procedure in paragraph 5-26.

3-8. NORMAL OPERATION. During normal operation of the transmitter following performance of the start-up procedures, routine operator actions are performed in coordination with, and usually at the direction of the RCS-4B receiver operator. Typical operations are as follows:
a. With the sweep and clock started, place MODE switch in PROG position. The frequency sweep will advance from 2 MHz to the upper limit of either 16 or 30 MHz (as selected by the UPPER FREQ switch) in each five minute period of the hour. The individual five-minute periods are enabled or disabled by the path programmer MIN UTES switches. If a particular MINUTES switch is down, disabling the transmitter sweep, the frequency display remains at 02.00 MHz and there is no transmitted signal for that 5-minute interval. The transmitter MIN/SEC clock continues to run.
b. A transmitter self-test can be performed at any time and has no effect on transmitter operation. Refer to step $p \longdiv { \text { paragraph 3-7 bove for description of self test } }$ procedure.
c. Proper forward and reflected power can be measured at any time. In DIPLEX with the FWD/REFL switch on the 1024 front panel in the FWD position, the needle should remain in the green zone; with the switch in the REFL position, the needle should remain below the red zone. In DIRECT mode, the measurement of forward and reflected power may vary considerably depending on the load impedance of the antenna. Meter readings inside and outside colored zones can be expected during normal opertion. As a general guide, if the forward power indication is in the green zone, and the reflected power indication is below the red zone, then the VSWR is less than

6:1. Any VSWR less than $10: 1$ is acceptable for chirpsounder use in typical applications. The TCS-4B cannot be damaged by any VSWR (from open circuit to dead short), but the quality of the received ionogram may be greatly reduced when using poorly matched antennas. It is desireable (but not absolutely necessary) to operate with antennas that match to within $4: 1$ VSWR over most of the frequency range of interest.

3-9. STANDBY POWER

3-10. In the event of a power loss, all displays will turn off. If battery power is on, the internal clock will continue to function and the blanker memory will be retained until primary power is restored or the batteries run down. The duration of battery life is dependent on ambient temperature. At $23^{\circ} \mathrm{C}$, battery life will exceed 24 hours. At $0^{\circ} \mathrm{C}$, battery life may be no longer than 8 hours. When primary power is restored after an interruption, the transmitter may generate a random out-of-sequence frequency sweep. When this sweep is completed and an automatic reset occurs, normal operation will commence on the next programmed 5-minute interval.

3-11. SHUTTING DOWN THE TRANSMITTER
3-12. If the transmitter $R F$ output is to be turned off, but time synchronization maintained indefinitely, leave the 1024 AC power on, and shut off the 4011 (and 5018) power.

3-13. If all transmitter power is to be shut down, but time synchronization (temporarily) maintained, make sure that the BAT switch on the 1024 is ON.

3-14. If transmitter is to be shut down with loss of time synchronization, turn BAT switch OFF. Then, turn off power switches of the 1024 and the 4011.

3-15. For shutdown of more than two days, the following steps should be performed:
a. For transmitters with the non-rechargeable standby battery supply (P/N 60251008), turn BAT switch OFF, and then turn off the 1024 and 4011 power switches.
b. For transmitters with the rechargeable standby battery supply (P/N 6025-1018), perform these steps:
(1) Operate equipment from normal AC line power for 24 hours (minimum) to fully charge batteries. (Batteries must not be stored if discharged.)
(2) Turn on BAT switch on 1024 front panel.
(3) Turn off AC line power to TCS-4B.
(4) Press TEST switch on 1024 front panel and verify green BAT test indication.
(5) Remove battery supply from 1024 and momentarily press battery cutout pushbutton (S 1) through hole in battery box top cover.
(6) Reinstall battery supply in 1024 with AC line power off.
(7) Press TEST switch on 1024 front panel with AC line power off and BAT switch ON. Verify that BAT test lamps on front panel do NOT light.
(8) Turn off BAT switch.
(9) Secure equipment for shipping or storage.

CAUTION

Do not turn on AC line power to instrument at any time after the batteries are disconnected with battery box cutout pushbutton until equipment is ready for normal use. Applying AC line power to unit automatically reconnects batteries to battery charger circuit (even with front panel BAT switch off) and slowly discharges batteries when AC line power is removed. If AC line power is accidentally applied prior to storage, repeat procedure starting at step 2 above.

3-16. For long term storage (more than six months) of transmitters with the nonrechargeable standby battery supply, remove and store separately the D-cell bat teries. For transmitters with the rechargeable battery supply, first, perform the procedure of paragraph 3-15, b above, then remove the complete battery drawer assembly from the 1024 and store separately to avoid damage from any possible battery cell leakage.

NOTE

Early versions of the rechargeable battery supply - part number 60251018, Revision A - did not include a battery cutout pushbutton switch (S1). Later versions - Revision B and on - include the cutout switch (S1) and a deep-discharge battery protection circuit that prevents battery damage if the battery supply is accidentally left on and allowed to discharge. The Revision A version of the battery supply may suffer permanent damage, and can not be recharged, if it is allowed to completely discharge or if it is stored for long periods without first being fully charged. Operating procedures for the Revision A version of the rechargeable battery supply are the same as for the non-rechargeable battery supply. However, the Revision A rechargeable battery supply should be stored only after it is fully charged. If difficulties or poor performance are encountered with the Revision A battery supply, contact BR Communications for assistance or repair.

FIGURE 3-1. Controls and Indicators.

Table 3-1. Controls and Indicators

Figure reference	Control	Function
1.	$\begin{aligned} & \text { Clock Display - } \\ & \text { MIN SEC } \end{aligned}$	Provides numeric display of system time in minutes and seconds.
2.	Frequency Display - MHz	Provides numeric display of transmitted frequency truncated at 10 kHz ; also provides readout of stored blanker frequencies when BLKR DSPL switch activated.
3.	Output Power Meter and FWD/ REFL Switch	Provides indication of forward or reflected power to/from diplexer or antenna. With switch in FWD position, meter reads forward output power of transmitter. Reading should be in green zone of meter. With switch in REFL position, meter reads reflected, or reverse, power. Reading should be below red zone of meter.

When operating in DIRECT mode, considerable variation in needle position may occur due to antenna VSWR variations with frequency. Meter readings inside and outside colored zones can be expected durng normal operation. The transmitter will not be damaged by any VSWR.

4.	TEST Switch-indicator	When pressed during transmitter sweep, initiates both a transmitter functional test and a standby battery voltage test. Results of test are shown by indicators 5, 6, 7, and 8 below.
5.	$\begin{aligned} & \text { SYST } \\ & \text { Indicator (Red) } \end{aligned}$	Indicates (when lighted) a malfunction in one or more power supplies or improper synthesizer operation.
6.	$\begin{aligned} & \text { SYST } \\ & \text { Indicator (Green) } \end{aligned}$	```Indicates (when lighted) both synthesizer and power supplies are functional (operational during button depression only).```
7.	BAT Indicator (Green) BAT Indicator (Red)	Two lamps indicate standby battery condition. Lamps are activated by circuitry that measures battery box terminal voltage. For the non-rechargeable battery supply (P/N 6025-1008), a test is performed with AC line power either on or off, battery switch (13) on, and TEST switch (4) pressed. For the rechargeable battery supply (P / N 6025-1018) , the AC line power must be off to conduct an accurate test. However, if the rechargeable battery supply is in a low charge condition, turning off AC line power can cause loss of synchronization. If operating in synchronization

Table 3-1. Controls and Indicators - Continued

Figure reference	Control	
Function		

Table 3-1. Controls and Indicators - Continued

Figure reference	Control	Function
11.	BLKR STORE Pushbutton Switch	When actuated, causes the frequency set on BLANKER FREQ switches to be stored in memory channel selected by CHANNEL Switch. This switch is enabled only with PROG/RUN switch in PROG position.
12.	BLKR DSPL Pushbutton Switch	When actuated, enables readout on MHz frequency display of blanker frequency from memory of selected CHANNEL, providing PROG/RUN switch is in PROG position. If PROG/RUN switch is in RUN position, erroneous display of memory can occur.
13.	BAT ON/OFF Switch	On/Off control for battery circuit of timer auxil- iary power supply.

NOTE
In all Operational modes, the BAT ON/OFF switch should be left on. When on, battery control of the timer becomes automatic in the event of a main AC line power failure.

14.	PROG / RUN Switch	A two-position toggle switch that controls the frequency blanking function. In PROG position, the blanker memory may be loaded or checked, and frequency blanking is disabled during a sweep. In RUN position, the memory frequency settings will automatically blank the transmitter output as described in 9 above.
15.	DIPLEX/DIRECT Switch	A two-position, locking-type toggle switch that selects the transmitter output connection. The toggle lever is spring-loaded to lock and must be pulled out to change switch positions. In DIPLEX position, TCS-4B output is passed through internal diplexer, and approximately 2% of output power reaches antenna. This mode used for diplexing TCS-4B sweep onto a communication transmitter signal. In DIRECT mode, TCS-4B output is connected directly to the antenna bypassing diplexer, and the communication transmitter input connection on 4011 unit is open circuited.
16.	UPPER FREQ 16/30 Switch	A two-position toggle switch that selects transmitter sweep range of either 2 to 16 or 2 to 30 MHz .

Table 3-1. Controls and Indicators - Continued

Figure reference	Control	Function

NOTE

Changing position of UPPER FREQ switch during a frequency sweep may cause the transmitter to reset to 2 MHz until the next sweep start time. The position of this switch should only be changed when the sweep is stopped.

17.	ADV TIMER Pushbutton	When actuated, advances system time one minute. MODE switch must be in SET position.
18.	MINUTES Programmer Switches	12 toggle switches labeled 0 through 55 in five minute increments for control of sweep start during any hour period. These switches are active only when MODE switch is in SET or PROG position. When in up position, the transmitter sweep will start; with the switch in down position the sweep is disabled for the particular five-minute period.
19.	. 1 PWR/FULL PWR Switch	A two-position toggle switch that selects either full power or $1 / 10$ th of full power for TCS-4B transmitter output to antenna.
20.	RESET Pushbutton Switch-indicator	When MODE switch is in MAN or SET position, switch lights to indicate reset function is enabled. When actuated in manual mode, resets frequency sweep to lower limit, 2.00 MHz . When actuated in set mode, resets system time to zero.
21.	STOP Pushbutton Switch-indicator	Stops sweep in manual mode. The switch lamp lights when MODE switch is in MAN position to indicate that switch function is enabled.

NOTE

STOP switch is illuminated when in SET mode, but switch function is not enabled.

22.	START Pushbutton Switch-indicator	Starts sweep in manual mode; initiates system time in set mode. The switch lamp lights when MODE switch is in MAN or SET position to indicate that switch function is enabled.

Table 3-1. Controls and Indicators - Continued

Figure reference	Control	Function
23.	MODE Switch CONT, MAN, SET, and PROG Positions	Four-position rotary switch selects transmitter mode of operation: a. CONT : Enables continuous sweeping. b. MAN: Enables START, STOP, and RESET switches for manual sweep control. c. SET: Enables RESET and START switches for control of system clock. d. PROG: Enables automatic sweep start under control of the MINUTES programmer switches.
24.	POWER Pushbutton Switch-indicator	Power on/off pushbutton switch for 1024 unit. Green light indicates power on.
25.	STD ADJ Potentiometer	Provides fine adjustment of internal 5 MHz fre- quency standard. Each full turn of control will change frequency to compensate for 0.5 milli- seconds of drift per 24 hours.
26.	POWER Indicator	Power indicator for 5018 unit. Green light indi- cates power on.
27.	POWER Pushbutton Switch-indicator	Power on /off pushbutton switch for 4011 unit. Green light indicates power on.

SECTION 4

THEORY OF OPERATION

4-1. INTRODUCTION
4-2. GENERAL. The TCS-4B Transmitter consists of three modular units mounted within an environmentally protective case. The physical arrangement of circuits within the units is functionally oriented. Unit 1, the 1024 Transmit Sweep Generator, contains the transmitter control circuits and provides a sweeping, low-level exciter signal to the power amplifier unit. Unit 2, the 5018 Power Amplifier, comprises the drive and output amplifier circuits that provide up to 100 watts output (50 dB gain) of the lowlevel RF sweep signal from the 1024 Transmit Sweep Generator. Unit 3, the 4011 Filter/Diplexer, contains the output low pass filters and antenna switching circuits. Each of the units is supplied with primary line voltage and contains regulated power supplies.

4-3. FUNCTIONAL DESCRIPTION. The TCS-4B Transmitter is a broadband, EM/CW, oblique sounder whose output is swept over a frequency band of 2 to 16 MHz , or 2 to 30 MHz , as selected by front panel control. The transmitter is tuned by a digital synthesizer which is synchronized with an associated RCS-4B Receiver. The synthesizer sweep rate is either $50 \mathrm{kHz} / \mathrm{sec}$ for $2-16 \mathrm{MHz}$ range or $100 \mathrm{kHz} / \mathrm{sec}$ for $2-30 \mathrm{MHz}$ range for a constant sweeping time of 280 seconds.

4-4. The transmitter with associated, remotely located receiver and spectrum monitor functions as an on-line test set for continuous channel measurement of path loss, time dispersion, noise, and interference over the 2 to 30 frequency range. The measurement function can be performed continuously and in parallel with transmissions of an operational communications transmitter/receiver system using a common antenna via the TCS-4B diplexer unit. The transmitter sweeps the complete band repeatedly at five-minute intervals or can be preprogrammed by front panel switches to skip any five-minute interval. With an actual transmission time of 4 minutes 40 seconds, 20 seconds in each interval are allowed as blank time to accommodate switching at the receiver which can be operating with up to three different transmitters, thus measuring three different propagation paths.

4-5. BLOCK DIAGRAM DESCRIPTION (figure 4-1)
4-6. TRANSMIT SWEEP GENERATOR. In the 1024, the timing and frequency synthesis functions originate from a crystal oscillator (oven stablized) in the frequency standard assembly 1A3. The output of the oscillator provides a stable frequency refernece for the sweep synthesizer assembly 1A1. The frequency reference signal is also supplied to the transmit logic assembly 1A2 where it is divided down to provide all system timing.

4-7. In the transmit logic assembly 1A2, the programmer circuit (1A2A 1) divides the 5 MHz reference signal down to 100 kHz for frequency counter timing and then down to precise one-second pulses to control the sweep generator clock. The programmer divides the clock time into 5 -minute segments and, depending on the setting of front panel controls, sends a start-sweep pulse to the synthesizer every five minutes. The programmer circuit interprets nearly all front panel switch functions and sends the appropriate sweep start, stop, and reset commands to the synthesizer. The other circuit card in the transmit logic assembly is the frequency counter/blanker (1A2A2). This circuit counts the synthesizer output, and this count is sent to the numeric dis -
play (1A5). It also compares the counted frequency with a memory containing the center frequency of up to 16 bands that can be preset to blank the transmitter output. A blanking signal from the memory inhibits the synthesizer output and suspends the frequency counting by the filter set in the 4011 unit.

4-8. The sweep synthesizer assembly 1A1 generates a precision linear RF sweep signal between 42 and 56 or 42 and 70 MHz . This signal is converted down by a synthesized 40 MHz signal to yield the $2-16$ or $2-30 \mathrm{MHz}$ sweep output. Operator selection of $2-30$ MHz causes the sweep output to change by 1 Hz every 10 microseconds (a $100 \mathrm{kHz} / \mathrm{see}$ rate). Selection of $2-16 \mathrm{MHz}$ range cuts the sweep rate in half. Operator selection of full power output causes the sweep synthesizer to output a one milliwatt (0 dBm) signal level to the 5018 power amplifier. A 0.1 power selection cuts the synthesizer output power to 0.1 milliwatt.

4-9. As shown in figure 4-1, the 1024 also contains a numeric display assembly 1A5 that provides a digital display of output frequency and internal system clock time. A front panel power meter displays the measured forward or reverse power from a power detector in the 4011 filter/diplexer unit. A complete power supply operates the 1024 on 115 or 230 VAC input at $47-440 \mathrm{~Hz}$. In the event of an AC line power failure, a standby power supply provides battery-powered 5 -volts $D C$ to sustain the programmer clock, the blanker frequency memory, and the 5 MHz frequency standard. The subpanel control assembly 1A6 provides the necessary circuits to operate the unit.

4-10. POWER AMPLIFIER. The 5018 power amplifier consists of two main assemblies secured to two thick aluminum plates. The upper assembly (2A1, figure FO-1) contains a low pass filter assembly (2A1A1) that attenuates spurious VHF signals on the sweep generator signal and a power amplfier assembly (2A1A2) that divides the input into two parts and amplifies each part to a maximum 10 watt level. One part is routed to the 4011 unit for filter decoding. The other part is divided into four equal RF drive signals. Each drive signal is amplified and then recombined into a maximum 100-watt output to the 4011 unit. The second assembly (2A2, figure FO-1) contains the power supplies that provide over 800 watts of regulated DC power to run the amplifier components.

4-11. FILTER/DIPLEXER (figure FO-2). The 4011 filter/diplexer also uses two large aluminum plates for assembly mounting. The upper section (assembly 3A1) contains the filter set (3A1A1) that provides eight half-octave low-pass filters to suppress harmonics of the power amplifier output to 60 dB below the fundamental. Selection of the appropriate filter is done by a filter decode assembly (3A2A2) on the lower section (assembly 3A2) that operates by counting the frequency of the 10 watt 5018 output. If output blanking occurs, frequency counting is temporarily suspended. The filtered sweep signal then passes through the power detector assembly (3A1A3) that drives the front panel power meter on the 1024.

4-12. The 4011 implements either of two modes of operation: direct output of the sweeping signal to the antenna or a diplexed output simultaneously containing approximately 98 percent of a communications transmitter signal (up to 2.5 kW PEP) and 2 percent of the sweeping signal. A front panel DIRECT/DIPLEX switch activates the relays that control these two modes. Selection of direct mode causes the two relays in the 4011 to route the sweeping signal to the 4011 output. Selection of diplex mode routes the sweeping signal to the diplexer assembly (3A1A2) where it is loosely coupled to the antenna output. The 98 percent of the sweeping signal not coupled to the antenna output (along with about 2 percent of the communications transmitter power) is

TM 11-5820-918-13
dissipated as heat in a $50-o h m$ load attached to the 4011 enclosure. A power supply (3A2A1) in the 4011 routes 115 or 230 VAC power to the 5018 and provides the necessary regulated DC power to run the 4011 assemblies. This power supply is part of the lower section (3A2) along with the filter decode assembly.

4-13. 1024 TRANSMIT SWEEP GENERATOR - UNIT 1
4-14. The transmit sweep generator (f qure FO-1) donsists of six principal assemblies: frequency standard (1A3) ; sweep synthesizer (1A1) ; transmit logic (1A2); numeric display (1A5); primary power supply (1A7); and battery power supply (1A4). The transmitter self-test circuits are part of assembly 1A2.

4-15. FREQUENCY STANDARD (fiqure FO-3)(S/N 400101 and on). The transmitter timing circuits are based on a 5 MHz standard supplied by a highly stable crystal oscillator. Contained in the frequency standard module are three assemblies. Assembly A1 is the crystal oscillator within a temperature controlled oven; A2 consists of amplifier and control circuits; and A3 is a switching regulator. The oscillator has an internal voltage regulator (about 9 volts) which appears at A1J1- 2. This voltage is used to trim the frequency (coarse and fine) by applying an adjustable DC bias to A1J1-1. Q1, Q2 and VR1 comprise a voltage regulator to power the unit during normal operation. If primary power fails, the battery supply on $E 15$ is switched in by CR1. CR2 prevents the battery voltage from appearing on $K 1$ during a primary power failure. This allows K1 to close after a few milliseconds delay and bypass CR1 thereby eliminating the power loss in CR1.

4-16. The switching regulator 1A3A3 (figure FO-4) provides +5 VDC power (+5VB) for all critical timing circuits of the transmitter. Regulation is controlled by regulator U1. Switching transistor Q1 and clamping diode CR 1 provide variable width drive pulses into storage inductor L1. L1-C2 provides the phase shift necessary for oscillation and determines the switching frequency. L2 and C3 form a ripple-reduction filter. The switching regulator has a 1.5 amp fuse on its input to prevent serious damage in case of a long-term short. Circuit damage from momentary shorts is protected by internal current limiting (R2).

4-17. SWEEP SYNTHESIZER (P/N 5030-1001 Only) (Refer to figures 4-R, FO-5, and FO-6). The sweep synthesizer consists of two circuit card assemblies: the microphage synthesizer, operating between 42 and 70 MHz , and the synthesizer converter, which offsets the microphage output by 40 MHz to produce the $2-30 \mathrm{MH}$ sweep. In addition, the synthesizer module has two fixed frequency outputs, 5 and 40 MHz , used in the receiver, and a $2.1-3.5 \mathrm{MHz}$ count output used by the frequency counter logic. Logic to control the frequency programming of the synthesizer RF sweep is contained on the converter assembly. This logic digitally increments the synthesizer frequency program every 20 microseconds to produce a linear frequency sweep. External control inputs to the synthesizer converter logic provide means to start, stop, reset, and blank the sweep and to select sweep limits and rates. Transmit blanking of the $2-30 \mathrm{MHz}$ output is implemented by disabling the 40 MHz mixer conversion of the $42-70 \mathrm{MHz}$ signal. All synthesis operations are based on an externally supplied 5 MHz standard.

4-18. The synthesizer module may be used without modification in either the receiver or transmitter. For TCS-4B applications, the $2-30 \mathrm{MHz}$ output is used directly to drive the 5018 RF amplifier. For RCS-4B applications, the basic RF sweep is offset 200 kHz higher to produce a $42.2-70.2 \mathrm{MHz}$ receiver 1st L.O. from the microphage synthesizer and a $2.2-30.2 \mathrm{MHz}$ receiver calibration signal from the synthesizer converter. Selection of transmit or receive frequency formats is provided by a digital programming line in the unit wiring harness connecting to the sweep synthesizer assembly.

4-19. The sweep synthesizer uses a single digital phase-lock loop (PLL) design employing a fractional phase computation technique that provides a phase-continuous (coherent) output sweep with 2 Hz frequency resolution. The fractional phase computation technique is a hybrid approach that combines the operation of a conventional phase coherent, high frequency, low resolution, PLL synthesizer and a digitally controlled, low frequency, high resolution, direct phase computation waveform generator. The result is a PLL synthesizer capable of locking properly with a continuously changing programmed phase error within the loop. The programmed phase error capability of this hybrid loop extends the frequency resolution of the basic PLL by almost five decades.

4-20. The basic microphage synthesizer phase-lock loop (figure 4-2) consists of a voltage controlled oscillator (VCO) having a frequency range of 42 to 70 MHz , a loop amplifier/integrator, a phase detector, and a counter/divider/comparator string. This basic synthesis loop is capable of synthesizing any frequency between 42 and 70 MHz in 100 kHz steps as determined by the effective divide ratio in the divider between the VCO and the phase detector. That is, for the VCO to operate at 45.1 MHz , the divider must divide by 451 to achieve the required 100 kHz output for the phase detector. (The phase detector reference is 100 kHz .) Another way of considering this loop is to note that during the 10 microsecond period of the phase detector reference, the VCO must advance exactly 451 cycles (zero crossings) if the loop is to lock properly. To synthesize 45.15 MHz with this loop would imply $4511 / 2$ cycles of phase every 10 microseconds. By adding additional logic to the basic loop, the synthesizer can operate properly by processing for the integer (451) and fractional (1/2) cycle of phase information. For example, for the synthesizer to operate continuously at 42.123000 MHz , the phase (i.e., VCO zero crossings) must advance 421 whole cycles plus 23/100 fractional cycles every 10 microseconds. A phase computer computes both the exact whole number and fractional number of phase cycles of the programmed frequency occurring in a 10 microsecond period. The result of this phase computation is then added to the stored phase value from the previous 10 microsecond frame. For example, assume a continuous frequency of 42.123 MHz , and a phase register initially at zero. During the first 10 microsecond frame, the phase computer calculates 421.23 cycles of phase. For the second 10 microsecond frame, the VCO advances another $421.23+421.23=842.46$ total cycles by the end of the second frame. Similarly, for the third frame, the phase is advanced to $842.46+421.23=1263.69$, and so on.
$4-21$. The synthesis loop operates by comparing and changing the VCO output phase to equal that of the phase computer for both integer and fractional cycles. Integer cycles (e.g., 421) of VCO phase are controlled by conventional phase-lock loop techniques employing a high speed BCD counter and digital phase detector. The fractional remainder of VCO phase (e.g., 0. 23) is handled by the residue generator. The residue generator is digitally programmed waveform generator, controlled by the phase computer, that corrects the output of the loop phase detector for the remaining fractional cycle phase error occurring every 10 microseconds. It is this programmed, fractional cycle, phase error correction capability that allows the loop to operate to a much finer frequency resolution than can normally be expected from a conventional (integer

cycle) phase-lock loop. Thus, in this example, while the integer cycle BCD counter accumulates an additional 421 cycles every 10 microseconds, the residue generator corrects the phase detector by $0, .23, .46, .69$, etc. cycles every 10 microseconds to produce a VCO output frequency of 42.123 MHz or 23 kHz offset from an integer 100 kHz point. The ability of the residue generator to correct the loop is limited only by the accuracy of the residue correction waveform. In the sweep synthesizer assembly, this correction is made with sufficient accuracy to provide 2 Hz frequency resolution with spurious signals typically greater than 50 dB below the fundamental.
4.22. SWEEP SYNTHESIZER (Part Number 5030-1101) (fiqure FO-13) (refer to figure 4-3). The sweep synthesizer 1A1 is a modular, digitally controlled, phase-lockedloop synthesizer that generates the linear RF sweep.

NOTE

The synthesizer module is used interchangeably in both transmit (TCS4B) and receive (RCS-4B) applications. A programming line in the instrument wire harness determines whether the synthesizer operates in the transmit or the receive mode.

The sweep synthesizer module has five RF outputs: (1) the $42-70 \mathrm{MHz}$ first mixer L.O. injection for the receiver; (2) the 40 MHz second L.O. receiver injection; (3) a buffered 5 MHz from which the receiver third mixer L.O. injection is derived; (4) the $2.1-3.5 \mathrm{MHz}$ count output which is used by the frequency counter in the TCS$4 B$ transmit logic, or RCS-4B receiver control logic to drive the front panel LED frequency display; and (5) the $2-30 \mathrm{MHz}$ transmit sweep output which drives the TCS-4B RF power amplifier or the RCS-4B receiver calibrator circuits. The one RF input to the sweep synthesizer is the 5 MHz frequency standard signal from which all RF outputs are derived. The synthesizer digital inputs select parameters such as: sweep rate and limits; sweep start, stop and reset ; RF blanking; slip; auto sync and RF output power level. The module consists of three circuit card assemblies: synthesizer 1A1A1, down converter 1A1A2, and sweep programmer 1A1A3.
4.23. SYNTHESIZER (figures FO-7 and FO-8) (refer to figure 4-4). The 5053-2001 synthesizer circuit (1A1A1) is a digitally programmed, phase-locked-loop synthesizer capable of generating any frequency between 42 and 70 MHz to 1 Hz resolution. It consists of a 42-70 MHz VCO, a programmable divider (divide-by-N), a phase detector and loop amplifier, and control logic (phase register and timing generator). Figure 4-4 is a simplified diagram of the circuit. A detailed functional block diagram is in figure FO-7.
a. The output frequency of the VCO (and the synthesizer) is determined by electrically tuning the VCO with a control voltage from the loop amplifier. The loop amplifier produces this control voltage by integrating (smoothing) the phase-error signals generated by the phase detector. If there is no phase error, the output of the phase detector is zero and the loop amplifier will hold the VCO at its existing frequency. If there is a phase error the phase detector will drive the loop amplifier to change the VCO frequency until the error is corrected. The synthesizer uses the phase detector to compare the output of the divide-by-N counter with a fixed 100 kHz reference signal. If the phase or frequencies of these two signals do not match, the phase detector will drive the loop amplifier to adjust the VCO frequency until the divide -by-N output exactly matches the 100 kHz reference, thereby achieving phase lock. The VCO output frequency is always N times 100 kHz . There are N cycles of the VCO output for every one cycle of the 100 kHz reference. If N is an integer number, the VCO frequency will be an exact multiple of 100 kHz . However,

FIGURE 4-3. Sweep Synthesizer (1A1) Functional Block Diagram (Part Number 5030-1101).

FIGURE 4-4. Simplified Block Diagram of Synthesizer CCA 1A1A1 (5035-2001 only).
if N is a number consisting of both integer and fractional components, intermediate frequencies between 100 kHz points may be synthesized. For example, to produce a 43.5 MHz output the divide-by-N counter must divide by 435. If an output of 43.501 MHz is desired, the required divide ratio is 435.01. The divide-by-N counter, however, is a 3 decade counter only capable of dividing by integer numbers between 400 and 700. To divide by 435.01 the phase register circuitry programs the divide-by-N to divide by 435 for 99% of the time and divide by 436 for the remaining 1\%. The resulting average divide number is $\frac{(99 \times 435)+(1 \times 436)}{100}=435.01$.
b. Because the synthesizer basic timing reference is 100 kHz , the divide-by- N counter completes a count sequence (frame) every $10 \mu \mathrm{~s}$. In the above example the divide-by-N will count 435 VCO cycles (zero crossings) for ninety-nine $10 \mu \mathrm{~s}$ frames and 436 cycles for one frame. The phase detector and loop amplfier will then try to drive the VCO to operate at 43.50 MHz for $990 \mu \mathrm{~s}$ and at 43.60 MHz for $10 \mu \mathrm{~s}$. The resulting VCO output is a phase modulated signal with an average center frequency of 43.501 MHz with 1 kHz sidebands. The 1 kHz sidebands result from the jumps in VCO frequency occuring every one millisecond ($990 \mu \mathrm{~s}+10 \mu \mathrm{~s}=\mathrm{lms}$). The amplitude of the sidebands can be reduced by smoothing the jumps in frequency such that the VCO remains steady at the average frequency and does not follow the loop back and forth between the two programmed frequencies. However, to reduce the sidebands to an acceptable level (-50 dBc) would require smoothing (slowing) the loop response to such an extend that the synthesizer would no longer be suitable for sweeps used in Chirpsounder applications. These sidebands may be cancelled however, using a fast loop and a fractional phase correction circuit operating in conjunction with the divide-by-N.
c. Since the average frequency of the VCO is correct, the average value (or dc component) of the VCO control voltage from the loop amplifier is correct. The undesired 1 kHz sidebands are produced by the sudden phase errors generated when the divide-by-N counter jumps between the two programmed integer divide numbers. This produces a small momentary change in the VCO control voltage which modulates the VCO frequency resulting in sidebands. The fractional phase correction circuit cancels the VCO modulation by injecting a compensating phase error correction signal into the loop amplifier to counteract the effect of the phase error jump when the divide-by-N skips from one divide ratio to another. The phase register keeps track of when to skip the divide-by-N from one divide ratio to the next and simultaneously programs the residue logic of the fractional phase correction circuits. The residue logic, in turn, drives the residue generator, which produces the residue fractional phase error correction signal. By careful alignment of the residue generator the synthesizer sidebands can be suppressed better than 50 dB below the fundamental output level. The divide-by-N counter consists of a VCO prescaler which typically divides the VCO output frequency by 2. The prescaler also contains a pulse skipper circuit that makes the divide-by- 2 circuit skip one extra VCO clock pulse each time a skip command is given. This effectively turns the prescaler into a divide-by-3 circuit during a skip command. The output of the VCO prescaler drives the VCO divider. The combination of the VCO divider and the VCO prescaler is capable of dividing by an integer number between 400 and 700. For example, to divide by 437, the VCO counter down counts 430 times and the VCO prescaler skips 7 extra VCO clocks during the count sequence, yielding a total count of 437. The phase register accepts binary-coded-decimal (BCD) frequency program data from the sweep programmer card. All 7 decades of BDC data are transferred serially on a decade by decade
basis every $10 \mu \mathrm{~s}$. All timing signals needed by the synthesizer are produced by the timing generator circuit. The timing generator controls the timing of the transfer of frequency data input to the phase register and divide-by-N counter, and controls the timing of the fractional phase correction (residue) circuitry.

4-24. DOWN CONVERTER (figures FO-9 and FO-10). The 5035-2002 down converter circuit 1A1A2 generates additional synthesized signals derived from the 5 MHz frequency standard and the $40-70 \mathrm{MHz}$ synthesizer output which are required for transmitter (or receiver) use. The primary function is to translate the 42-70 output of the synthesizer to a $2-30 \mathrm{MHz}$ output for the transmit sweep. The 5 MHz input from the frequency standard is buffered by the down converter circuit and frequency multiplied to 40 MHz by the harmonic generator and 40 MHz bandpass filter. The 40 MHz is then mixed with an amplified $40-70 \mathrm{MHz}$ signal from the synthesizer. The output produce of the mixer is the $2-30 \mathrm{MHz}$ transmit sweep which is further amplified and filtered to produce a 0 dBm (one milliwatt) sine wave output. The down converter also features a gating circuit which turns off the $2-30 \mathrm{MHz}$ output when it is not needed. Gating is used for blanking of the TCS-4B transmit sweep at selected frequencies.

4-25. SWEEP PROGRAMMER figures FO-11 and FO-12). The 5035-2003 sweep programmer circuit 1A1A3 controls the frequency sweep by digitally programming the synthesizer to advance its output frequency in 1 Hz steps every 10 microseconds. The sweep programmer contains an 8 decade $B C D$ counter that stores the programmed frequency data of the synthesizer. This is preset with the sweep starting frequency (low limit) of 2 MHz . When the sweep START command (from the sounder control logic) is received, a 100 kHz clock from the synthesizer is gated on to the 8 decade counter. The counter increments by one count on every pulse of the 100 kHz clock. This advances the preset count by one Hz every 10 us resulting in a linear increase in the programmed frequency corresponding to a 100 kHz per second sweep rate. The sweep continues until it reaches 30 MHz when the upper limit detect circuit interrupts the 100 kHz clock thereby stopping the sweep and resetting the 8 decade counter back to the 2 MHz low limit. If a $2-16$ sweep is selected the sweep programmer operates as described above except the upper limit detector is set to 16 MHz and the sweep clock is divided by 2 to 50 kHz .
a. The sweep programmer also contains slip circuits and clock gating circuits which increase or decrease by basic 100 kHz (or 50 kHz) sweep clock by $0.1,1.0$, or 5.0%. The resulting sligght changes in sweep rate allows the RCS-4B receiver sweep to be advanced or retarded relative to the TCS-4B transmit sweep for synchronization purposes. This slip circuitry is not used in TCS-4B applications. The blank control circuit drives RF gating circuits in the synthesizer down converter and the TCS-4B transmitter RF power amplifier output low pass filter set. When a blanking pulse is generated by the frequency counter/blanker (1A2A2), the sweep programmer blank control circuit determines the length of the blank interval. Earlier versions of the TCS-4B transmitter used a 20 kHz wide ($\pm 10 \mathrm{kHz}$) blanking interval while newer versions employ a 60 kHz interval.
b. The sweep programmer also contains two digital dividers; the 100 kHz reference generator, and the VCO divide-by-20 counter. The input to the 100 kHz reference generator is the 5 MHz standard which is digitally divided by 50 to produce 50 nan0second wide pulses a 100 kHz rate. These pulses drive the synthesizer phase detector reference input. The VCO divide-by-20 counter takes the $42-70 \mathrm{MHz}$ synthesizer output and divides it to the $2.1-3.5 \mathrm{MHz}$ count output for use by the frequency counter logic that, in turn, drives the LED displays.

4-26. TRANSMIT LOGIC. The transmit logic forms the digital control function for the transmitter and is composed of three principal circuits: a programmer for controlling the automatic sweep start function initiated by the front panel programmer switches, a frequency counter for driving the frequency readout display, and a frequency blanker for control and storage of transmitter blanking frequencies.

4-27. Programmer (fiqure FO-14) (S/n 400101 and on). This circuit (1A2A1) has a 60 -minute clock and a five-minute interval decoder to perform the auto program start function. U 1 and U 3 form the control logic for the synthesizer commands: start, stop, reset, and end sweep blanking. The START and RESET switches are connected at U7-3 and U7-5. When the mode switch is in the SET position, these inputs exercise the clock run/reset latch (U25). The clock's time base is the 5 MHz signal from the frequency standard. U5 and U6 divide the 5 MHz by 50 , to 100 kHz . U10, Ull, U12, U18, and U17 divide the 100 kHz down to 1 Hz . U 30 is the programmer clock "seconds" counter. Its carry output advances U 24 which divides by six and is the 10 's of seconds counter. U22 and U28 operate similarly for the minutes and tens of minutes. Counter dividers U18, U17, U30 and U24 are all reset and held at zero when the clock run/reset latch (U25) is in the reset state. Resetting the clock latch also triggers one-shot U31-10 providing a momentary reset pulse to counter dividers U28 and U22. The clock is manually advanced in integer minutes by the addition of advance timer pulses from U31-7 into U23-12. The clock circuit is powered from the +5 VB supply which is supplied from the switching regulator (1A3A3) and battery backup when primary power is off. The five-minute interval decoding is done by U33 and U21 with 12 output lines that go to the subpanel program switches. One line out of the 12 goes low for approximately 500 microseconds at the beginning of its respective fiveminute interval. If that particular interval switch is selected, an auto start pulse is generated.
4-28. The TEST switch activates the battery and circuit status lights by supplying +5 VB to U26-14 and enables U20-4 and U20-10. It also supplies current to the base of $Q 3$ which in turn saturates $Q 2$. Q2 then supplies the battery voltage to the voltage divider network of R21, R23, and R22. This network, in conjunction with U26, yields the following battery condition light indications:

```
greater than }23\mathrm{ volts = green light
between 18 to 23 volts = red and green lights
less than 18 volts - red light
```

Circuit status is determined by $U 8$ which measures the power supply voltages and the out-of-lock (OOL) flag from the synthesizer. The start, stop, and reset pushbutton lamps are driven by $\mathrm{Q1}$ when they are active.

4-29. Frequency Counter (fiqure FO-15) (S/N 400101 and on). The frequency counter receives a "count" signal from the synthesizer which is related to the output frequency as follows:

$$
\text { "count" frequency }(\mathrm{MHz})=\frac{\mathrm{f}_{\mathrm{o}}+40}{20}
$$

where f_{0} is the output frequency in MHz . This signal is buffered by U28-1 and presented to divider U9-13 which performs two functions. First, it acts as the gate for the counter; that is, this gate is enabled by U9-6 for 4 ms during each count cycle. When U9 is enabled (U9-11 and 12 high), the signal at U9-13 is divided by two at U99, and further divided by U23, U31, U39, and U47. Each counter divides by ten. At the conclusion of each 4 ms gate period, the count on these counters is strobed
into U24, U32, U40, and U48, the outputs of which are delivered to U8, U14 through U16 and on to the LED display (frequency section). Basic timing for the counter is derived from a 100 kHz clock which is divided by U1 and U3 to 1 kHz . This 1 kHz is divided down to 125 Hz at U9-5. U10 and U33 form a circuit which makes the 125 $\mathrm{Hz}, 4 \mathrm{~ms}$ gate waveform slightly asymmetrical to avoid counter indecision when the synthesizer is stopped at exactly 2 MHz (when reset). One-shot U18 generates a nominal 10 microsecond latch/load pulse that strobes the new BCD frequency into the latches following the count period.
4-30. Frequency Blanker (figure FO-15) (S/N 400101 and on). The frequency blanker section provides storage and control for 16 discrete frequencies about which the RF output of the TCS-4B is gated off for $\pm 30 \mathrm{kHz}$ of sweep width. U11, U19, U35, and U43 are 64 -bit (16 x 4) random access memories which store the desired blank frequencies. The frequency and channel (1 of 16) are entered by front panel thumbwheel switches. The RUN/PROG switch must be in the PROG position to enter frequencies. Entry is then made by pressing the STORE pushbutton switch. The contents of each channel are examined by pressing DISPLAY (only in PROG position) and observing the frequency readout of the LED display. Placing the RUN/PROG switch to the RUN position causes U4 to count instead of load and thereby cycles through all address codes of the memories every 4 milliseconds. The memories receive the frequency data in true $B C D$ form and invert the data on their outputs. The output data must then be inverted to have "true" data again. The memories are powered by $+5 V B$ from the switching regulator which provides battery backup during primary power failure, preserving the contents of the memories.
4-31. The data from the memories is presented to a four decade comparator, comprising U21, U29, U37, and U45, U22, U30, U38, and U46 forms a counter identical with U23, U31, U39, and U47 except U22 is loaded with a preset count. This preset count number causes the compare pulse on $\mathrm{U} 45-6$ to be 30 kHz ahead of the true count frequency. This pulse then sets U34-5 high which starts the blanking process. U25 then shifts (6 shift pulses) this pulse down to pin 11 which terminates the blanking. The shift clock is generated by the synthesizer and is always equal to 10 kHz of sweep bandwidth regardless of sweep speed.

4-32. NUMERIC DISPLAY AND DRIVER (fiqure FO-16 and FO-17). The numeric display (figure FO-16) consists of two blocks of four digits. The first block (LED 1 thru 4) displays elapsed program time in minutes and seconds and has a fixed colon (CR1 and CR2) separating the minutes from the seconds. The second block (LED 5 thru 8) displays frequency in megahertz to two decimal places. The decimal point is permanent and is placed at the start of the third digit (activated by R65 to ground). The path digit (LED 9) is not used on the transmitter.

4-33. The LED display is driven by eight BCD to 7-segment decoder drivers (figure FO-17). The drivers accept positive true BCD time and frequency information from the 5-minute timer and frequency counter and translate the information to 7-segment negative true outputs for the common anode LED readouts.

4-34. PRIMARY POWER SUPPLY (figure FO-18). The primary power supply provides all the DC voltages used in the transmit sweep generator unit. Voltages provided are +12 VDC, -12 VDC, $+24 \mathrm{VDC},+35 \mathrm{VDC}$, and multiple +5 VDC outputs, both regulated and unregulated. The three regulated +5 VDC outputs supply the logic voltage for both the synthesizer and the programmer circuits. The single +5 VDC unregulated output provides power for front panel indicators including the LED display. The +5 VDC regulated supplies are separated to isolate noise signals between circuits. The +12 VDC, -12 VDC supplies and the +24 VDC supply (all regulated) are used for
the synthesizer logic. The unregulated +35 VDC supply is applied to the frequency standard module and the programmer test logic.

NOTE
For units with a rechargeable battery supply (paragraph 4- 37), +35 VDC is also supplied to the battery charging circuit.

4-35. An internally mounted toggle switch is provided for switching between 120 and 240 VAC inputs. In addition, compensation for small increments of input line voltage variations can be made with jumpers on a terminal board mounted adjacent to the transformer primary.

4-36. STANDBY BATTERY SUPPLY (1A4) (P/N 6025-1008). The non-rechargeable battery consists of $18,1.5-v o l t ~ b a t t e r i e s . ~ T h e ~ s u p p l y ~(a p p r o x . ~ 29 ~ t o ~ 15 ~ v o l t s ~ d e-~$ pending on battery condiditon) is used to drive the switching regulator and the crystal oscillator located in the frequency standard module 1A3 if the main power is interrupted. A test circuit, located on the programmer circuit card 1A2A1, measures the output voltage of the battery supply and yields the results necessary to drive the front panel indicators. (Refer th paragraph 5-26 for battery test conditions.) A5 amp fuse, located within the supply, provides protection for inadvertent shorts.

4-37. RECHARGEABLE STANDBY BATTERY SUPPLY (1A4) (P/N 6025-1018). The rechargeable battery supply (figure FO-19) is used to maintain timing synchronization, blanker frequency memory and the 5 MHz frequency standard in the event of power cut-off. The supply consists of 12 sealed lead/acid batteries, rated 2 -volts each, and a voltage regulator circuit card. The supply is contained in a sliding drawer. Standby power of 28 -volts DC is supplied to the 10245 MHz frequency standard and to a switching regulator which provides +5 volts DC to the programmer timers.

4-38. The regulator card, mounted in the battery box, receives unregulated +35 VDC input from the 1024 power supply. Voltage regulator U1 (figure FO-19) is set to output exactly 28.9 VDC by potentiometer R3. The resulting 28.9 volts at TP1 provides a precise terminal voltage (28.2 volts) for the batteries at the manufacturers recommended trickle charge rate of approximately five milliamps. The 6.8 ohm resistor, R4, limits the charging current to a safe value (400 mA max.) when the batteries are discharged. The 2 -amp fuse, $F 2$, prevents severe physical damage to the system wiring harness or battery box if an inadvertent short occurs on the 28 volt line. Fuse F1 protects the 1024 power supply from shorts in the battery charging circuit. Permanent damage to the batteries may occur if they are allowed to completely discharge to 0 volts. Relay coil (K1) and zener diode (VR1) sense the battery voltage. If the voltage drops below 19 volts, relay K 1 drops out (opens) removing the battery load. Turning the AC line power to the 1024 back on automatically resets (closes) the relay and activates the battery charger circuit to recharge the batteries. Depressing switch S1 forces the relay to drop out when the batteries have normal charge and the AC line power is off. This allows the batteries to be disconnected from any load for long term storage. Refer th paraqraph 3-16 for additional storage information.

4-39. 5018 POWER AMPLIFIER - UNIT 2

4-40. The power amplifier unit figures FO-21 and FO-22) consists of the 100-watt amplifier assembly (2A1), the power supply assembly (2A2), and the enclosure assembly (2A3). The 100- watt amplifier assembly contains the 32 MHz low pass filter (2A1A1) and power amplifier subassemblies (2A1A2). The power supply assembly provides all the regulated DC power for the 100 -watt amplifier assembly. The enclosure assembly figure FO-22 contains the chassis and the rear panel subassembly (2A3A1).

4-41. 32 MHz LOW PASS FILTER (figure FO-21/1). Assembly 2A1A 1 is an LC low pass filter to attenuate frequencies above 32 MHz . This assembly receives the RF signal (2- 30 MHz) from the synthesizer and provides an output to the power amplifier.

4-42. POWER AMPLIFIER (figure FO-21). The power amplifier consists of a driver circuit (2A1A2A2), a four-way power splitter/combiner circuit (2A1A2A3) and four identical 30W power amplifier circuits (2A1A2A4-A7). The driver circuit consists of a class A linear preamplifier followed by two parallel class A push-pull driver amplifiers. The RF gain from the preamplifier input to each driver amplifier output is approximately +38 dB . The nominal full power input to the driver preamplifier from the 1024 is approximately 0 dBm . This yields an output power level for each driver of 5 to 10 watts (typically 7) when the TCS-4B output is 100 watts. Of the two 10 -watt driver outputs, one is used as the input to the power splitter/combiner (figure FD$21 / 3)$, and the other is used to drive the filter decode module in the 4011 unit.

4-43. The 10 -watt signal from the driver circuit is impedance-transformed and split by the power splitter to form four identical signals which feed the four 30 -watt power amplifiers. Each 30- watt power amplifier fiqure FO-21/4) consists of a two transistor class A push-pull, transformer coupled, broadband linear amplifier. Each output transistor (21 and Q2) is biased to 2.75 amps collector current (5.5 amps total) by integrated circuit bias regulator U . Each of the four amplifiers has a gain of 14 dB and produces up to 30 watts at each of their respective outputs. The power combiner adds the four 30 -watt signals to produce the final output of approximately 100 watts. The RF power is impedance transformed to 50 ohms and presented to the output connector J3.

CAUTION

The amplifiers, splitters, combiners, and RF cables are carefully phasematched to ensure proper division of $R F$ power throughout the amplifier. Any change of coax cables connecting the power splitter/combiner could seriously degrade the amplifier performance.

4-44. 5018 POWER SUPPLY (figures FO-23 and FO-24) (S/N 400101 and on). This circuit accepts 115 or 230 VAC at $47-440 \mathrm{~Hz}$ and produces the following outputs:
a. $115 \mathrm{VAC}, 60 \mathrm{~Hz}$ - three independent supplies for the rear panel-mounted cooling fans.
b. +27 VDC - five independent supplies for power amplifier circuits.
c. +5 VDC - one supply for the front panel power indicator lamp.

4-45. The AC line input from the rear panel is RF filtered by FL1 and presented to the primary of transformer $T 1$ via an input voltage selector switch (SW1). The selector switch is factory wired to the $115 / 230$-volt terminals of T 1 . Some variations of input voltages can be accommodated by changing transformer connection points as indicated by the values shown at the taps of transformer T1 primary. Also connected to the primary side of Tl are the $\mathrm{AC}-\mathrm{to}-\mathrm{AC}$ converters. These units are separately filtered and convert 107 VAC at $47-440 \mathrm{~Hz}$ to 115 VAC at 60 Hz . They provide constant cooling fan speed regardless of the input line frequency. The secondary winding of $T 1$ supplies voltage to five full wave bridge rectifiers (CRl-CR5). These rectifiers supply 35 volts to the five voltage regulators (A1-A5). Each regulator is factory set to supply $27.2 \pm .2$ VDC to the 100 -watt amplifier assembly (2A1). Regulators A1A4 supply power to the four 30 -watt amplifier circuits, and A5 supplies power to the driver circuit. A single 5 -volt regulator (U4) supplies power to the front panel poweron lamp. Each 27 VDC regulator is connected to a thermostat on the 100 -watt amplifier assembly. If the temperature on the amplifier assembly exceeds safe operating limits $\left(215^{\circ} \mathrm{F}\right)$, the thermostat contact opens. With the thermostat contacts open, regulators A1-A5 are disabled.

NOTE

The 100-watt amplifier assemblies (5018-1001) (S/N 400100 and before) do not have the thermal protection and must be modified when used in 5018 amplifier units with S/N 400101 and above. Connector 2AlJ4, pin F must be connected to chassis ground. If this pin is not grounded, the 27 VDC regulators will be disabled due to the thermal shut-off feature.

4-46. 4011 FILTER/DIPLEXER - UNIT 3

4-47. The filter/diplexer figure FO-2) consists of five main assemblies: filter set (3A1A1); filter decode (3A2A2); power detector (3A1A3); diplexer (3A1A2); and power Supply (3A2A1). The power detector is a $30-\mathrm{dB}$, high frequency, directional coupler/ detector which provides output voltages related to the forward and reflected powers. These voltages are used to drive the 1024 front panel RF power meter. Included in the 4011 are two relays which together allow diplexed or non-diplexed (direct) operation (figure FO-2).

4-48. FILTER SET (figure FO-25)(S/N 400101 and on). The filter set consists of eight sequentially enabled, half-octave, low-pass filters which are used to attenuate harmonics generated by the 5018 power amplifier. The filters are located on two circuit cards (3A1A1A1 and 3A1A1A2) within the filter set. The filters are designated LPF1-LPF7 and LPF9; LPF8 is a switchable bypass circuit that feeds the RF signal directly to LPF9. Filters LPF1-4 are located on the A2 assembly and LPF5 thru LPF9 are on the A1 assembly. The RF signal enters at J1 and is connected to E10 and E12 on the A1 and A2 assemblies respectively. If the signal is between $2.0-2.8 \mathrm{MHz}$, LPF1 is enabled. This is accomplished by enabling the input (CR10) and output (CR12) diode gates with forward biasing. This 5-volt bias is provided at E1 by the filter decode assembly. The remaining seven pairs of diode gates are reverse-biased by a -250 -volt potential also provided by the filter decode. As the RF sweep signal passes 2.8 MHz , CR10 and CR12 in LPF1 are reverse-biased by -250 volts, thereby removing LPF1 from the RF circuit. Due to the permanent bias of -240 volts at E9, CR11 is now forward-biased, shunting to ground any RF that leaks through CR10. As the RF signal sweeps up to 30 MHz , LPF2 thru LPF8 are sequentially enabled in a similar manner. The tabulation below indicates the frequency range during which each circuit is enabled.

Frequency (MHz)	Filter
$2.0-2.8$	LPF1
$2.8-4.0$	LPF2
$4.0-5.8$	LPF3
$5.8-8.0$	LPF 4
$8.0-11.0$	LPF5
$11.0-16.0$	LPF6
$16.0-23.0$	LPF7
$23.0-30.0$	LPF8
$2.0-30.0$	LPF9

As indicated in the table, LPF9 is in the RF path for all transmitted frequencies. This filter further attenuates any harmonic frequencies above 30 MHz not removed by the selected filter, LPF1- 8. When LPF8 is selected, the RF signal is fed directly to the LPF9. LPF8 contains no filtering elements and routes unfiltered RF to LPF9 which removes unwanted harmonics above 30 MHz .

4-49. FILTER DECODE (figure FO-27). Sequential switching for the filter set is provided by the filter decode circuit. This circuit determines the transmitted frequency and outputs +5 and -250 volts to bias the appropriate filters on and off. The filter decode circuit uses the 10 - watt output from the drive portion of the power amplifier. The input, at J1, is divided by two (U2) and gated by U3. The internal 1 MHz reference oscillator (U24) is divided down to 250 Hz which is used to gate the RF (divided by two) at U3 and to produce counter preset-load-latch timing pulses. Circuits U12, U5, U6, U 13, and U19 count the gated RF. Following a gate period, the BCD count is delivered through latches U7, U20, and U26 to the decoder circuit which determines the particular half-octave filter to be enabled. The transistor circuits that follow the decoder are the filter drivers which provide the necessary high power bias for the filter set pin diode switches. The +6 and -270 volt supplies are used to power the filter drivers. When loaded into the filter set, the output levels of the drivers are approximately +5 and -250 volts.

NOTE

The later serial numbered units (S/N 400101 and on) provide bias voltages of +5 and -250 as described. The earlier serial numbered units (S/N 400100 and before) used bias voltages of +5 and -270 . Other than these outputs, the circuits are the same.

4-50. DIPLEXER (figure FO-28). The diplexer is essentially a high-power, directional coupler matched on both sides to 50 ohms. The two transformers (T1 and T2) are configured to couple -17 dB (2 watts) of the chirp transmit signal to the antenna with a communications transmitter straight through loss of only 0.4 dB . The coupler also provides the TCS-4B transmitter with 40 dB of isolation from a displexed communications transmitter. Capacitor C1 is used to block DC continuity to ground in the diplexer during communications transmitter tests for antenna sensing. The two watts of transmitter signal are added to the communications signal, and the balance (98 watts) is absorbed by the 50 ohm load resistor (attached to the rear panel). The 0.4 dB of loss on the communications transmitter line is also absorbed by the load resister.

4-51. 4011 POWER SUPPLY (f gures FO-27 and FO-29). The power supply, along with components of the filter decode assembly, provides the 4011 unit with $+5,+6$, $+26,-240$, and -270 volts DC . In addition, the power supply provides power line switching for the 5018. Power to the 5018 unit is routed via a contactor (K1), having normally open contacts. The contactor coil is operated from the 401126 VDC line so the 4011 must be on before the 5018 can be turned on. This arrangement ensures that the 5018 will not delivery RF power to an inactive filter set.

4-52. As with all units in the transmitter, the 4011 has its own 230/115-volt selector switch. This is located after the line filter and power switch, and prior to the primary of T1. Some variations of input voltage can be compensated for by using different taps on T1. On the secondary side of T1, the -240 VEC bias voltage for the filter decode is developed by adding -270 volts and +30 VDC. The +5 and +6 VDC regulated voltages (figure FO-27/1), supply the TTL digital decode logic and the filter drivers respectively. Power to the 1024 is not switched by the 4011 unit; however, both units do use a common power input plug.

NOTE

The later serial numbered units (S/N 400101 and on) develop the 240 VDC bias voltage using -270 and +30 volts as described. In earlier units (S/N 400100 and before), a bias voltage of -250 VDC is developed using -270 and +20 volts. Other than these value differences, the circuit is the same for all units.

4-53. FREQUENCY STANDARD (figure FO-30) (S/N 400100 and before). The transmitter timing circuits are based on a 5 MHz standard derived from a 10 MHz temperature controlled quartz crystal oscillator. Both the oscillator-amplifier and the oven controller portions of the oscillator require a stable 10 VDC input. This is provided by regulator U3 from the battery or $Q 102$ regulated primary power source. An LC circuit comprising L1 and C10 further isolates the oscillator portion from switching transients. On the return side of the oven circuit, 0101 provides current limiting to safeguard against current surges during the initial oven heater warm-up period (approximately 5 minutes). The 10 MHz output of the oscillator is divided by flipflop U2 down to 5 MHz (internal standard) and fanned out to buffer gates U1 for use by the timing circuits as independent $5 \mathrm{MHz}, 50$ ohm sources.

4-54. SWITCHING REGULATOR (fiqure FO-31) S/N 400100 and before). This circuit regulates the +5 -volt power input to the primary timing circuits of the receiver. The circuit is basically intended for regulation of the battery supply during a power failure. However, in normal operation, a line power derived source of 29 VDC (from CR4+, figure FO-32) is routed through the same circuit allowing unbroken interruption of power should a supply failure occur. The high efficiency (65\%) circuit contained on this board uses a low current drain voltage regulator connected as an oscillator (U1) in which an inductor (L2) is used in the feedback loop as an energy storage device. By cent rolling oscillation, the inductor effects internal conduction of the regulator/ oscillator, thereby controlling voltage. A 1.6 A current limiter ($24, ~ Q 5$, and 26) and a 6 volt, 5 watt, overvoltage protector (CR6 and CR10) are included as an integral part of the circuit. A related circuit senses the input line to determine if the battery voltage is less than 16.3 volts. This is achieved at U2 by comparing the received voltage to two zener diodes, the difference voltage thereby controlling Q7, which in turn controls turn-on of oscillator U1.

4-55. PROGRAMMER (figure FO-32)(S/N 400100 and before). A 5 MHz input from the synthesizer is gated into U6 and continues through a fixed divider chain ending in U29. The resultant frequencies are 100 kHz at TP2 and 1 Hz at TP1. A BCD down counter to drive the front panel digital clock is formed by U30 (1 second), U24 (10 seconds), U22 (1 minute), and U28 (10 minutes). A BCD group branching off the same down counter into U16 and U10 is used to decode five minute segments from the front panel switch scanner circuit formed by U26 and U20. Every five minutes the next programmer switch on the front panel is interrogated by this scanner. If a switch is closed (ON), a pulse is passed through the programmer switch contacts and into the PSC (Common) terminal which then clocks U14. U14 triggers a one-shot (U21) which sends an auto-start pulse back to the synthesizer at terminal AST. At the end of each sweep, U14 is cleared to reset the auto- start circuit and await another PSC pulse from the front panel switches. U1 and U2 form part of the network which interfaces the front panel switches with the internal logic. These are switch debounce flip flops to prevent spurious transients from being gated as pulses. U13, U3, and U9 form a decoder that determines which switches are enabled based on the position of the MODE switch. In the manual (MAN) mode position, the front panel switches for sweep START, STOP, and RESET are enabled. In the SET mode position, START and RESET are enabled. In the continuous and program modes, the three switches are disabled. Transistors $Q 1$ through $Q 6$ are lamp drivers to indicate which of the front panel switches are enabled. Two one- shots formed by U8 have pulsed outputs which are enabled when the advance timer or reset switches are actuated. Their function is to either advance the minutes decades or reset the digital clock.

4-56. TEST CIRCUIT (figure FO-32 (S/N 400100 and before). The test circuit provides a go/no-go check of all DC power supplies, the battery supply, and synthesizer phase locked loop. The test is made by pressing the front panel TEST pushbutton and interpreting the indicators mounted adjacent to the switch. The method of ANDing the inputs to indicate test status is shown on the schematic (FO-23). All the low voltage $D C$ inputs are monitored, The +29 volt input comes from the switching regulator and effectively checks the +35 VDC unregulated supply. The input OOL (out of lock] comes from the synthesizer and is low if the phase locked loop is not locked. The LT input is not used on the transmitter. The output at U38-6 is low when all inputs are active. With U38-6 low and the test switch depressed, 88 will conduct (+5 volts), and the system test green indicator will light. Under the same conditions with U386 high (one or more inputs inactive), 27 will conduct, turning on the red lamp. Detection of battery condition by the front panel test lamps is indicated on the schematic, (figure FO-32). The test switch serves to enable transistors $Q 9$ and $Q 10$ which drive the battery indicator lamps. With the test switch actuated, the +5 VB enables U37 and also turns on $Q 12$ which drives $Q 11$ to saturation. The battery voltage is then sensed by the divider R46, R47, and R48. If the battery voltage is 22 volts or more, the divider biases $Q 10$ on which supplies 5 volts to turn on the battery green indicator. If the battery voltage is between 17 and 22 volts, the divider (R46, R47, and R48) biases both Q9 and Q10 on which causes both red and green lamps to light. For battery voltages between 17 and 14 volts, $Q 9$ is biased on the red lamp lights. Voltage below 14 volts is not sufficient to turn on either transistor and both indicator lamps remain off.

4-57. FREQUENCY COUNTER (f qure FO-33) (S/N 400100 and before). A 2.11 3.60 MHz input from the synthesizer ($1 / 20$ of the synthesizer output before down conversion) goes to terminal XF1 and is gated for two milliseconds into a 4-decade counter (U4-U7) preloaded to 5980. The counters count up from 5980 the number of cycles in the two-millisecond period. (For example, 2.11 MHz yields 4200 cycles in two milliseconds which when added to 5980 yields 10200 . The most significant digit (1) is discarded and a frequency readout of 2.00 MHz is displayed. The resultant transmit frequency is then latched for one counter cycle by latches U12-U15 and is then switched to the display drivers via $2-t o-1$ multiplexer U20-U23.
4-58. FREQUENCY BLANKER (fiqure FO-33) (S/N 400100 and before). The frequency blanker section provides the storage capability for 16 frequencies used to blank the transmitter output. The transmitter output is blanked for $\pm 10 \mathrm{kHz}$ about the stored frequency. U30, U31, and U32 are 64-bit, random access memories in which sixteen 4 -bit $B C D$ numbers may be stored. The frequency to be blanked and one of 16 possible memory channels are entered by front panel thumbwheel switches. Pressing the STORE switch with the RUN/PROG switch in the PROG (program) position enters the frequency into the selected channel location. Each channel location may be examined to determine what frequency is stored by pressing the DISPLAY switch. During operation, all 16 channels are sequentially addressed by U45 every 10 kHz step to the synthesizer output frequency. U9, U10, U17, U19, U25, U35, U36, and associated circuits form a 4-decade BCD subtracter which subtracts 10 kHz from the stored frequency and compares that result with the counter frequency (which is a 10 kHz behind the actual transmit frequency) in U8, U16, U24, and U34. If both frequencies are equal, a pulse (XBO) is sent to the synthesizer (U27 and U28, figure FO-5). The synthesizer then waits until the next 10 kHz increment and blanks the output for 20 kHz .
4-59. 5018 POWER SUPPLY (fqure FO-34) (S/N 400100 and before). The power supply circuit accepts 115 or 230 VAC at $47-440 \mathrm{~Hz}$ and produces the following outputs:
a. 115 VAC 60 Hz - three independent supplies for the rear panel-mounted cooling fans;
b. +27 VDC - five independent supplies for driver and power amplifier circuits; and
c. +5 VDC - one supply for the front panel power indicator lamp.

The AC line input from the rear panel is RF filtered by FL1 and presented to the primary of transformer T1 via an input voltage selector switch (SW1) . The selector switch is factor wired to the $115 / 230$-volt terminals of T 1 . Some variations of input voltages can be accommodated by changing transformer connection points as indicated by the values shown at the taps of transformer T1 primary. Also connected to the primary side of T1 are the AC-to-AC converters. These units are separately filtered and convert 107 VAC at $47-440 \mathrm{~Hz}$ to 115 VAC at 60 Hz . They provide constant cooling fan speed regardless of the input line frequency. The secondary winding of Tl supplies voltage to five full wave bridge rectifiers (CR1-CR5). These rectifiers supply 35 volts to the voltage regulators A1, A2, and A3. Regulators A1 and A3 supply four independent 27 VDC inputs to the power amplifier; and A2 supplies one 27 VDC input to the driver amplifier. A single output from A3 is also regulated by integrated circuit U4 to produce +5 volts for the front panel power-on lamp. Each of the five 27 VDC regulators is also connected to separate integrated circuit voltage regulators for current limiting and voltage control. The regulated output voltages are adjusted by potentiometers R33, R35, R31, and R37, while short-circuit, current-limiting
potentiometers R2, R10, R18, R6, and R14 are factory set.
4-60. FILTER SET (figure FO-35) (S/N 400100 and before). The filter set comprises eight sequentially- enabled, half-octave, low -pass filters which are used to attentuate harmonics generated by the 5018 power amplifier. The eight half-octave filters cover a $2-30 \mathrm{MHz}$ transmit frequency range and are individually enabled by the filter decode assembly as the sweep progresses. For example, a sweep beginning at 2 MHz enters at J1 (figure FO-35) and passes into filter FL1 whose input (CR1) and output (CR2) diode gates are enabled by forward biasing provided by the filter decode assembly. The remaining seven pairs of diode gates are reverse biased by a - 270-volt potential developed by the filter decode circuit. Note that C16 on schematic figure FO-35 is only included in the last filter. As the sweep passes through 2.8 MHz , the CR1 and CR2 gates are disabled by reverse biasing (- 270 volts at filter select input 1); thereby removing FL1 from the RF circuit (fiqure $\mathrm{FO}-26$). At the same time, FL2 is enabled by switching its filter select input to +5 volts. Due to a permanent bias of -250 volts at the junction of R1 and R2, the +5 volt reverse biases CR1 and CR2 by 255 volts. This again causes a current flow such that CR3 and CR4 are forward biased. When the selection cycle has passed through FL- 7, a direct connection (RG - 58) is enabled, and only FL8 is in the RF path. This filter, which is at all times in the RF line, now acts solely as the last half-octave filter for $23-30 \mathrm{MHz}$. During the blank period between sweeps, FL8 is the only pass filter selected until the sweep restarts.

SECTION 5

MAINTENANCE
5-1. INTRODUCTION
5-2. This section provides maintenance and service information for the TCS-4B transmitter. Included are tables of recommended test equipment, a preventive maintenance schedule, corrective maintenance procedures, and performance verification data. An understanding of the theory of operation frgm Section 4 is required for troubleshooting and repairing the equipment.

5-3. TEST EQUIPMENT

5-4. Recommended test equipment for performance tests and troubleshooting is listed in table 5-1. Other test instruments may be used if their performance is equivalent to those listed. If a test measurement is made which is outside the acceptable range, operation of the test equipment should first be verified before assuming malfunction of the equipment under test.

Table 5-1. Test Equipment Required

Item	Recommended manufacturer and type
Oscilloscope	Tektronix 455 (or 465)
Frequency Counter	Hewlett Packard 5300B
Multimeter	Simpson 460
Termination, 2 watts	Microlab FXR TA - 5MN
Attenuator, 20 dB	Tektronix 011-0059-02
RF Wattmeter	Bird Electronic Corp. 6155
Spectrum Analyzer with IF Section RF Section	Hewlett Packard 141T Hewlett Packard 8552B Hewlett Packard 8553B
Power Supply (35VDC Lab type)	Lambda LL-903-0V, or Lambda LP-522-FM, or HP 6200B

5-5. PREVENTIVE MAINTENANCE

5-6. Table 5-2 provides a list of recommended preventive maintenance procedures. To assist in obtaining long-term trouble-free operation of the transmitter, the procedures should be adhered to as closely as possible. Marginal operation of any unit checked should be noted and carefully re-examined at the next maintenance period.

WARNING

In the performance of some maintenance procedures, it is necessary to have the equipment energized and dust covers removed. Extreme care must be exercised in making internal measurements or adjustments since potentially lethal voltages are present.

5-7. CORRECTIVE MAINTENANCE
5-8. The corrective maintenance data provided in this section consists of troubleshooting procedures and adjustment procedures. Parts requiring removal during relevant adjustment operations are described and illustrated as necessary. The recommended maintenance approach for the TCS-4B transmitter is repair by replacement of assemblies. Faulty assemblies are returned to the depot for repair to a part level.

5-9. TROUBLESHOOTING PROCEDURES. Table 5-3 provides a basic guide for troubleshooting the transmitter. The table is not intended to be all inclusive but rather to provide indications of what unit or assembly is defective. One approach to fault isolation is to derive all possible information from the function or malfunction of operating controls and indicators and then, through systematic analysis of test and measurement data, along with the troubleshooting guides, localize a fault to a module or assembly. The malfunction is verified and corrected by replacing the faulty assembly with a known good assembly. The performance test paragraph 5-20, plus figures 5-5, 5-6, and 5-7 and schematics provide the measurement data that can be used for fault isolation.

NOTE

In order to perform troubleshooting and adjustment procedures, individual units must be removed from rack, and top access cover must be withdrawn, being careful to first disconnect interconnecting cables.

Table 5-2. Preventive Maintenance Schedule

Procedure	Schedule		
1. Check frequency standard and adjust if necessary per procedure given ir paragraph 5-15,	At installation and /or after equipment has been moved; there- after as needed to correct for drift.		
2. Check battery condition by performing self-test			
(refer to paragraph 3-7, step p); if necessary			
change batteries according tp paragraph 2-17.			
The primary AC power should be on when			
performing this test.		\quad	At beginning of each
:---			
shift			

Table 5-2. Preventive Maintenance Schedule - Continued

Procedure	Schedule
4. Check cooling fan efficiency on the 1024 and 5018 units. For the 5018 unit, movement of air should be easily detected about 12 in . (20 cm) away from the rear panel fan which exhausts air from the unit. The 5018 inlets are filtered (the 1024 is not filtered). Remove and clean inlet filter if exhaust air flow is inadequate. Remove the 12 screws that hold the unit to the 5018 from panel and wash the filter with water, either spraying or submerging the unit. Dry thoroughly.	Weekly (daily if in dusty area)
5. Make check of RF power elements by determining power output of 4011 unit to be $50-150$ watts during normal non-diplexed sweep operations. This is accomplished by performing RF power performance test (paragraph 5-22) and frequency test (paragraph 5-23).	Monthly
6 Make visual inspection of all interconnecting cables and connectors at rear of units. Ensure that plugs are fully inserted and that no undue strain is being placed on cables.	Monthly and prior to new startup.
7. Remove top covers from all (three) units and make visual inspection of interiors. Ensure that all modules are properly seated and that no loose wires or signs of overheating exist.	Every 3 months
8. Make visual check of power heat sink located at rear of 4011 filter/diplexer unit. Note any discoloration or signs of excessive heating in surrounding hardware. The dummy load in this unit is designed to absorb 300 watts (maximum) of RF power in the diplexed mode.	Every 3 months
9. Check all low voltage DC power supplies per instructions given in the adjustment procedures, paragraphs 5-14, 5-19, 5-25, and 5-28.	Every 3 months
10. Check transmitter output spectral purity by performing harmonics/spurious response test (paragraph 5-30).	Every 3 months

Table 5-3. Troubleshooting Guide

	Indication	Location/Cause
1.	1024 Main Power pushbutton does not illuminate	Main line disconnected; fuse F1 (1024) blown; transformer or lamp malfunction. Check position of switch S1, line selector. Overvoltage crowbar tripped.
2.	5018 Power indicator does not illuminate	Main line input disconnected; 4011 not on; fuse F1 (5018 or 4011) blown; contactor K1 (in 4011) malfunction; transformer (in 5018 or 4011) or lamp malfunction; malfunction in 5018 voltage regulators A3 or U4; overvoltage crowbar in 4011 tripped.
3	4011 Main Power pushbutton does not illuminate	Main line disconnected; fuse F1 (4011) blown; malfunction in FL1, T1, CR5, or lamp. Check position of switch S1, line selector. Overvoltage crowbar tripped.
4	No RF power indication.	Defective or disconnected coax cabling; defective meter; no output from 1024 unit, overheating in 5018 unit causes a thermal switch to cutoff amplifier bias voltage; defective 5018 RF amplifier or power supply; defective 4011 filter set, RF relays, power detector, or power supplies.
5.	Low or incorrect RF power meter reading.	1024 not switched to full output; faulty 5018 power supply; defective meter movement; one or more 5018 RF power amplifiers faulty; defective input cables; faulty synthesizer in 1024; faulty 4011 filter set.
6.	Amplifier overheating.	Defective fan; defective power supply; ambient air above specifications; obstructed fan intake or exhaust; diplex relay in direct mode with communications Tx on; faulty load resistor connection.
7.	Numeric display stopped or incorrect.	If frequency: Problem is synthesizer frequency counter (1024) , or frequency standard, Press TEST pushbutton to check synthesizer. If time: Problem in programmer or frequency standard. Check 1A2A1, TP3 (see fiqure 5-5) (100 kHz).
8.	Excessive RF power variation versus frequency sweep.	Faulty 4011 filter set, 4011 filter decode, or 5030 sweep synthesizer.

Table 5-3. Troubleshooting Guide - Continued

Indication	Location/Cause		
9. System fault indicator lights			
red lamp.		\quad	Indicates in any of 1024 DC power supplies or
:---			
fault synthesizer. Perform synthesizer and			
1024 DC power supply performance tests.			
Refer to paragraphs 5-2 $3, ~ 5-24, ~ a n d ~ 5-31 . ~$			

5-10. OVERVOLTAGE PROTECTION. The 1024 and 4011 power supplies incorporate an overvoltage protection device, shown in fiqures FO-18 and FO-27. The overvoltage device accomplishes circuit protection by effectively short circuiting the output terminals of the power transformer when the trip voltage limit is exceeded. The over voltage device is connected across the 11 volt terminals and trips at 17 volts. When the trip voltage is exceeded, the input power fuse is normally blown. This condition should be noted when troubleshooting and line voltage checked before trying to turn on the transmitter.

5-11. OVERHEATING PROTECTION. Overheating conditions in the 5018 unit are sensed by a thermal cutoff switch, U1 (fiqure FO-21/1). This switch is located on the 5018 power amplifier RF assembly and activates when temperature exceeds $215^{\circ} \mathrm{F}$ $\left(101^{\circ} \mathrm{C}\right)$ to disable the 27 VDC power supply to the amplifier.

5-12. ADJUSTMENT PROCEDURES
5-13. GENERAL. All initial adjustments to the transmitter are made at the factory before shipment. These procedures are provided for use following repair or as required during the performance verification test.

$\overline{\text { WARNING }}$

Use extreme care when making internal adjustments with power on. Potentially lethal voltages are present in the transmitter.

5-14. 1024 POWER SUPPLY ADJUSTMENT (S/N 400101 and on). The 1024 has only one power supply adjustment. This adjustment involves connecting of a low line tap for line voltage variations that are below acceptable limits. The 1024 operates satisfactorily when the main line power is between 110 and 125 volts (for 115 V position of voltage select toggle switch) or 215 to 250 volts (for 230 V position of toggle switch). (Refer to figure FO-18.) Use of the low line tap (220-105) is only necessary if line voltages lower than 110 V (or 215 V) are expected. To make this adjustment, disconnect wire at TB1, pin 1 that goes to switch S1, and connect wire to TB1, pin 2 fiqure FO-18) .

5-15. FREQUENCY STANDARD ADJUSTMENT. Over long periods of time, the tem-perature-controlled quartz crystal in the frequency standard will show effects of precession (frequency change due to crystal aging). When the rate of precession in the receiver and transmitters is not equal, the effects of a difference will show up by vertical movement of a received path on the RCS-4B receiver CRT. Normally a path can be recentered on the receiver CRT by means of the receiver SLIP control. If the SLIP control is adjusted to recenter any single path more than once in eight hours, there is need to adjust the frequency standard on the transmitter. However, if all transmitter displays show drift on the CRT in the same direction, it is necessary to adjust the receiver frequency standard. (Refer to $R C S-4 B$ receiver manual.)

5-16. To make the transmitter frequency adjustment, the direction of drift on the RCS-4B receiver CRT must be determined. If the displayed path is moving downward, the 1024 front panel fine control (STD ADJ) should be turned counterclockwise. If the displayed path is moving upward, the control should be turned clockwise. (One full turn of the control changes the drift rate by approximately 0.5 milliseconds per 24 hours.) If the front panel control range is insufficient (total range is 20 turns end to end) to make the correction, it should be recentered, and the adjustment made on the coarse control located on the 1024 frequency standard 1A3 figure 5-1). Adjust the coarse frequency control by turning it in directions opposite to that of the front panel fine adjust. If the display is drifting downward, turn the coarse adjustment clockwise. One turn of the coarse frequency adjustment will compensate for a drift of 100% of CRT height per 24 hours (5ms/24hrs) for a $2-30 \mathrm{MHz}$ sweep, or 50% of CRT height for $2-16 \mathrm{MHz}$ sweeps.

5-17. 5018 POWER SUPPLY ADJUSMENT (S/N 400101 and on). Variations in input line voltage can be accommodated by adjusting the positions of taps on the transformer primary. The adjustment is made on assembly 2A2 (fiqure FO-23) by unsoldering the standard $115 / 230$ volt connections at pins 4 and 9 of $T 1$ and moving higher or lower in voltage as required. With voltages less than 110 or 215 VAC, move connections on respective primaries to pins 3 and 8. With voltages greater than 120 or 250 VAC, move connections to pins 5 and 10.

5-18. 4011 POWER SUPPLY ADJUSTMENTS . The 4011 power supply provides DC voltages of $+5,+6,+26,-240,-270 \mathrm{VDC}$. None of the voltages requires adjustment; however, they; should be periodically checked in accordance with the performing verification test (paragraph 5-29). Adjustment to accommodate low AC input voltages can be made paragraph 5- 19).

5-19. AC INPUT ADJUSTMENT. Lower voltage variations from the standard 115 or 230 VAC input can be accommodated by changing connections to the line voltage switch. Upper limits of 120 or 240 VAC can be tolerated using the same factory wiring as for $115 / 230$ volt. If the line voltage is closer to the alternative 105 or 220 volt, remove the AC switch bracket on assembly 3A2A1 (schemati\& figure FO-2 9) and remove existing gray and white wires from pins 1 and 3 respectively on the underside of the switch. Replace the 230 volt gray wire with the 220 volt gray/white wire (sorted from the transformer cable) and replace the 115 volt white wire with the 105 white/black wire. Insulate the exposed ends of the unused wires and secure wires to the cable bundle.

FIGURE 5-1. Frequency Standard Crystal Oscillator Adjustment.

5-20. PERFORMANCE TEST PROCEDURES

5-21. GENERAL. The following performance tests are designed to provde the most expedient method of checking overall transmitter operation within the limits for field maintenance. The order of performing the tests will depend entirely on the anticipated status of the equipment. If the equipment is suspected of being below specifications, then the complete test in the order presented should be performed. If the equipment is being tested only for an over-all check, the RF power test (paragraph 5-22) and frequency test (paraqraph 5-23) should be performed first and any others as appropriate. The test equipment needed for the tests is listed in table 5-1.

5-22. RF POWER TEST. This test checks the RF power elements including the power amplifier (5018), and the filter set and filter decode (4011).

Switch the TCS-4B transmitter off, and disconnect the antenna from the 4011 (J7).
b. Set up the test equipment as shown in figure 5-2. The RF wattmeter is connetted to the 4011 RF out connector (J7) on the front panel.
c. On the 1024, the DIRECT/DIPLEX switch is placed in DIRECT , and the power output . 1 PWR/FULL PWR switch is placed in FULL position, and the sweep limit set for $2-30 \mathrm{MHz}$.
d. Set the RF wattmeter to the 150 watt scale.
e. Turn on the 1024 and 4011.
f. With the 1024 MODE switch in MAN position, press RESET, then press START.
g. If the RF power equipment is functioning properly, the $R F$ wattmeter should read greater than 50 and less than 150 watts throughout the frequency sweep.
h. Repeat step f with the . 1 PWR/FULL PWR switch in the . 1 PWR position. The RF wattmeter (50W scale) should be greater than 5 and less than 15 watts throughout the sweep.
i. If the RF output measured in steps g and h is only slightly out of specification (either too high or too low) but otherwise good, adjust the synthesizer output level as outlined in step k.
j. If there is not output or a very low output at any point during the sweep in the RF power test steps g and h, refer to the $R F$ power troubleshooting diagram, figure 5-3.
k. To adjust the transmitter RF power level follow the procedure below in the order indicated:
(1) Connect equipment as shown in figure 5-2.
(2) Set the 1024 for DIRECT, 0.1 PWR operation (10 watt output).
(3) With the 1024 MODE switch in MAN position, press RESET. Transmitter output should be approximately 10 watts at 2 MHz (not sweeping).
(4) Remove 1024 top cover and adjust R49 on the synthesizer down converter card in the 5030-1101 module of the 1024 (1A1A2R49) for an RF output of 12 watts at 401-J7. Note that 1A1A2R49 and R50 are both accessible through a small hole in the cover of the synthesizer module, (top side of the upper module in the 1024) such that the synthesizer module does not have to be removed or opened for adjustment. R49 is the potentiometer closest to the center of the synthesizer module and R50 is towards the edge of the synthesizer module.
(5) Set the 1024 for DIRECT, FULL PWR operation (100 watt output).
(6) Adjust $R 50$ on the synthesizer down converter card in the 5030-1101 module (1A1A2R50) for an RF output of 120 watts at 4011-J7.
(7) If adjustment of $R 49$ and $R 50$ cannot bring the transmitter to the required level, refer to figure 5-3.

1. Turn off power on 1024 and 4011 and replace cables removed in step a.

FIGURE 5-2. Power Amplifier Test Setup.
5-23. FREQUENCY TEST. This test checks the frequency sweep of the transmitter.
a. Switch the TCS-4B transmitter off and disconnect the antenna.
b. Set up the test equipment as shown in figure 5-4.
c. On the 1024, place DIRECT/DIPLEX switch in DIPLEX position and the power output . 1 PWR/FULL PWR switch in . 1 PWR position, and the sweep limits to $2-30 \mathrm{MHz}$.

CAUTION

This test must be performed with the DIRECT/DIPLEX switch in the DIPLEX position and the .lPWR/FULL PWR switch in the . 1 PWR position. If these switch settings are not observed, severe damage to test equipment could occur.
d. Set the frequency counter to read frequencies from 2 to 30 MHz .
e. Turn on TCS-4B transmitter.
f. With the 1024 MODE switch in MAN position, press RESET, then press START. Before the 1024 frequency MHz display reaches 3.00 , press STOP. Compare the 1024 frequency reading with the reading on the frequency counter. The readings should be equal.
g. Repeat the above procedure for frequencies between $15-16$ and $29-30 \mathrm{MHz}$.
h. If readings in steps f and g between the 1024 frequency display and frequency counter do not agree, replace the 1024 transmit logic (1A2) or sweep synthesizer (1A1) module.
i. Turn off TCS-4B transmitter and replace cable removed in step a.

5-24. DC POWER SUPPLY TESTS. The following test is subdivided into checks on the three individual units comprising the transmitter. All voltages are labeled adjacent to the test points. Note that some DC voltages are proportional to the incoming line voltage. If the average line voltage differs substantially from 115 (or 230) VAC, refer to adjustment procedure for AC input compensation. If no adjustment is provided for an out-of-spec voltage, the unit is probably defective and should be returned to the depot for evaluation and repair.

5-25. 1024 (UNIT 1) POWER SUPPLY TEST.
a. Remove top cover, and release captive screws on both modules A1 and A2. Stack up modules for access to test points.
b. Use a multimeter to check the following voltages (figures 575 and 5-6).
(1) At test points +5 V (A) and (B) measure $5 \pm 0.25 \mathrm{VDC}$
(2) At test point +5 V
(C) measures 5 ± 0.75 VDC
(3) At test point -12 V measure -12 ± 0.75 VDC
(4) At test point +12 V measure $+12 \pm 0.75 \mathrm{VDC}$
(5) At test point +24 V measure $+24 \mathrm{~V} \pm 1.50$ VDC
c. AC line ripple should be less than 10 mV peak-to-peak on regulated supplies and less than 1 volt peak-to-peak on the +5 C supply.

5-26. STANDBY BATTERY SUPPLY TEST. Two different types of standby battery assemblies are used in the TCS-4B. Some transmitters have a non-rechargeable battery assembly (part number 6025-1008) that uses standard D-cell batteries. Other transmitters have a rechargeable battery assembly (part number 6025-1018) that includes an integral charging circuit and uses sealed lead acid cells. Conditions for testing the charge of the battery supply differ between the non-rechargeable and rechargeable assemblies. These different conditions are noted in steps a and b below. The test results as defined in step c apply to the test of non-rechargeable and rechargeable assemblies.
a. For the non-rechargeable battery assembly (P / N 6025-1008), a test may be conducted at any time during operation with AC line power on or off and the BAT switch on. Pressing the TEST pushbutton switch on the 1024 front panel initiates the test and the BAT lamps light to indicate the charge condition of the battery supply as described in step c below.

FIGURE 5-3. RF Power Troubleshooting (Sheet 1 of 2).

EL9TFOI5

FIGURE 5-3. RF Power Troubleshooting (Sheet 2 of 2).

FIGURE 5-4. Frequency Test Setup.
b. For the rechargeable battery assembly (P / N 6025-1018), an accurate test of battery charge condition requires that AC line power is turned off. If the TEST switch is pressed with AC power on, the green BAT lamp should always light since the charging circuit, which is on when AC power is on, provides a 28 volt potential across the battery supply terminals. A red or red/green lamp indication may result if battery supply is very weak, fully discharged, or defective. A battery protection circuit in the rechargeable battery assembly automatically disconnects the supply if the battery voltage is below approximately 19 volts in which case neither BAT lamp would light during test and loss of synchronization occurs if AC power is off. For an accurate test of battery condition, press the TEST switch with AC power off and the BAT switch on and note the BAT lamp indications of step c.
c. The BAT lamp indications are as follows:
(1) Green BAT test lamp only lights:
(2) Green and red BAT test lamps both light:
(3) Red BAT test lamp only lights:

Battery measures greater than 22 volts. Conditions are acceptable for operation on battery power.

Battery measures between 18 and 22 volts. Conditions are marginal for operation. Battery pack must be charged soon (if rechargeable type) or replaced (if non-rechargeable type).

Battery measures less than 18 volts. Battery pack must be replaced or recharged; or BAT switch is off.

5-27. BATTERY CHARGER ADJUSTMENT (For Battery Assembly P/N 6025-1018). The battery charger circuit, located inside the rechargeable battery box, automatically recharges depleted batteries and provides a floating trickle charge to maintain the batteries in a fully charged state during normal AC line power operation of the TCS$4 B$ transmitter. Battery capacity and lifetime are dependent on the charging circuit output voltage. A charging voltage that is too high can damage the batteries, and too low a voltage does not maintain adequate charge in the battery cells. The battery charger circuit is set at the factory for a trickle charge voltage of +28.2 VDC which results in a 5 mA trickle charge current when connected to a fully charged battery pack. (This voltage will vary depending on the state of charge of the batteries). The battery charger circuit should not normally require readjustment. If adjustment is required due to replacement or aging of components, adjust as follows:
a. Remove battery pack (6025-1018) from the 1024 unit.
b. Remove top cover of battery pack.
c. Carefully connect a +35 VDC ($\pm 2 \mathrm{~V}$) external laboratory-type power supply to the battery charger circuit card inside the battery box. The positive (+) output lead of the power supply must connect to terminal E1 of the circuit card and the negative (-) output lead must connect to terminal E 2 (ground).
d. Connect the positive lead of a digital voltmeter to TP1 and the negative lead to E 2 of the charger circuit card.

FIGURE 5-5. Test Point Verification for Transmit Logic Module 1A2 (S/N 400101 and on).
e. Turn on the +35 VDC supply and adjust potentiometer $R 3$ on the card for a voltage of +28.9 VDC at TP1.
f. Move the voltmeter to terminal E4. Meter should read +28.2 VDC ($\pm 0.1 V D C$) if the batteries are charging properly.
g. If the voltage at E 4 is greater than +28.3 volts, check fuse $F 2$ and switch $S 1$ for continuity or replace battery pack.
h. If voltage at E 4 is less than +28.1 volts, allow battery pack to charge for 24 hours, then repeat steps e and f. If $E 4$ voltage is still low, replace battery pack.
i. Turn off +35 VDC supply, disconnect supply and DVM, and momentarily depress pushbutton switch $S 1$ on the circuit card.
j. Replace battery box cover and reinsert battery drawer into 1024 front panel.

5-28. 5018 (UNIT 2) POWER SUPPLY TEST.
Remove 5018 top cover and locate connector 2A1J4 at left side of unit (from front). Refer to figure 2- β. Remove 5018 RF input from the 1024 by disconnecting the 5018 rear panel connector at J1.
b. Use a needle probe on a DC multimeter and check for a voltage reading of 27 ± 1 VDC with less than 20 mV peak to peak AC ripple at connector terminals J4-A, J4-B, J4-C, J4-D, and J4-E. If voltages are approximately 7 volts instead of 27 , the over temperature thermostat has activated.
c. Measure DC bias voltages on transistor emitters of RF driver amplifier (2A1A2A2) and on the four RF power amplifiers (2A1A2A4-A7) with DC voltmeter and verify or adjust as indicated below:

CAUTION

When making measurements described below, make sure RF input power is disconnected. Do not short transistor emitter resistors to ground with meter probe as this may damage the transistors.

Driver Amplifier 2A1A2A2:

$$
\begin{array}{llll}
\text { Q1-E } & 0.8 & \pm 0.2 \mathrm{~V} & \mathrm{DC} \\
\mathrm{Q} 2-\mathrm{E} & 2.5 & \pm 0.3 \mathrm{~V} & \mathrm{DC} \\
\mathrm{Q} 3-\mathrm{E} & 1.7 & \pm 0.2 \mathrm{~V} & \mathrm{DC} \\
\text { Q4-E } & 107 & \pm 0.2 \mathrm{~V} & \mathrm{DC} \\
\text { Q5-E thru } & & \\
\text { Q } 8-\mathrm{E} \quad 2.7 & \pm 0.3 \mathrm{~V} & \mathrm{DC}
\end{array}
$$

Power Amplifiers 2A1A2A4 through 2A1A2A7

Q1-E	$2.8 \pm 0.2 \mathrm{~V}$ DC	Both transistors
Q2-E	(measure across	should be about
	10 ohm 2 watt equal. emitter resistors).	

NOTE

Adjust the 2.8 volt bias by screwdriver adjust potentiometer R3 on bias regulator subassembly card mounted above each power amplifier card. If bias cannot be set or if Q1 and Q2 biases differ by more than $\pm .25$ VDC, RF power amplifier is defective and should be replaced.
d. Replace covers and cables when finished.

5-29. 4011 (UNIT 3) POWER SUPPLY TEST

CAUTION

Disconnect 5018 power (3J4) to insure that there is no high power RF present.
a. Remove 4011 top cover. Remove eight screws securing chassis plate (4011- 1001) and remove chassis plate, disconnecting cables restricting chassis plate if module is to be removed.
b. Locate the following test points on module 3 A2A 2 (figure 5-8) and use a multimeter to check the voltages specified. Apply power to 4011.
(1) At test point +5 A measure $+5 \pm 0.25$ VDC
(2) At test point +6 B measure $+6 \pm 0.25$ VDC
(3) At test point +26 V measure $+26 \pm 3$ VDC
(4) At test point -250 V measure -250 ± 25 VDC
(5) At test point -270 V measure -270 ± 30 VDC
(6) AC ripple should be less than 10 mV peak-to-peak on regulated supplies and less than 10% of nominal DC amplitude on unregulated supplies.

NOTE

In test 3, 4, and 5 above, unregulated supplies are measured. Measurements will vary directly as a function of the input AC line voltage.
c. Remove power from the 4011 .
d. Replace chassis plate (4011-1001) removed in step a.
e. Replace cover removed in step a and replace 4011 in rack. Insure interconnecting cables are properly installed.

5-30. HARMONICS/SPURIOUS RESPONSE TEST. This test measures the harmonics and spurious response (spurs) of the TCS-4B transmitter. The test is performed in two parts. An RF Power test (paragraph 5-22) should be performed prior to this test.

FIGURE 5-6. Test Point Verification for Synthesizer Module 1A1 (P/N 5030-1001 Only).

Note: Voltages are approximate. EL9TFOI9

FIGURE 5-7. Test Point Verification for Synthesizer Module 1A1 (P/N 5030-1101 Only).

FIGURE 5-8. Test Point Verification for Filter Decode Module 3A2A2.

5-31. WIDE BANDWIDTH MEASUREMENT. Perform this measurement in accordance with the following procedure:
a. Turn off the TCS-4B transmitter and disconnect the antenna.
b. On the 1024, place the DIRECT/DIPLEX switch in the DIPLEX position. Place the . 1 PWR/FULL PWR switch in the . 1 PWR position.

CAUTION

This test must be performed with the DIRECT/DIPLEX switch in the DIPLEX position and the . 1 PWR/FULL PWR switch in the . 1 PWR position. If these switch settings are not observed, severe damage to the test equipment will occur.
c. Set up the equipment as shown in fiqure $5-9$. The spectrum analyzer should be set to $0-100 \mathrm{MHz}$ scan-width range and a full scale sensitivity of 0 dBm with input attenuator set to 30 dB . Set the 1024 to $2-30 \mathrm{MHz}$ range.
d. Turn on the TCS-4B transmitter. With the 1024 MODE switch in MAN position, press RESET, then press START. Throughout the sweep all harmonics should be at least 60 dB below the fundamental and all spurs should be at least 50 dB below the fundamental.
e. If harmonics are not at least 60 dB , and/or spurs not at least 50 dB below the fundamental, replace the 4011 filter set, 3A1A1 and/or filter decode 3A2A2. Repeat the measurement.
f. If harmonics and/or spurs persist, re-install original filter set or filter decode and replace the sweep synthesizer, 1A1, in the 1024. Repeat the measurement.

5-32. NARROW BANDWIDTH MEASUREMENT. Perform this measurement in accordance with the following procedure:
a. Repeat steps a and b bf paraqraph 5-31.
b. Make the following settings on the spectrum analyzer.
(1) Input Attenuator: 30 dB
(2) Bandwidth: 10 kHz
(3) Scan Width: 100 kHz/div.
(4) Scan Time: $10 \mathrm{~ms} / \mathrm{div}$.
(5) Video Filter: 10 kHz
(6) Range: 0-110 MHz
(7) Center Frequency: 2 MHz
c. Set up the equipment as shown in figure 59. Set the 1024 to the $2-30 \mathrm{MHz}$ range.
d. With the 1024 MODE switch in MAN position, press RESET, then press START. During the sweep, manually sweep the spectrum analyzer to keep the TCS-4B Transmitter signal within the displayed 1 MHz wide range of the analyzier. All spurs and the phase noise floor around the fundamental should be at least 40 dB below the fundamental, except within $\pm 50 \mathrm{kHz}$ of the fundamental.
e. If any spurs, or the phase noise floor, are not at least 40 dB down, except within $\pm 30 \mathrm{kHz}$, replace the sweep synthesizer, (1A1) in the 1024. Repeat the measurement after replacement of the sweep synthesizer.
f. If spurs and/or phase noise persist, re-install the original sweep synthesizer, and replace the frequency standard (1A3). Repeat the measurement after replacing the frequency standard.

5-33. FREQUENCY STANDARD CALIBRATION

5-34. CALIBRATION REQUIREMENTS. The TCS-4B internal frequency standard (1A3) may be calibrated to a known station standard by following the procedures outlined in paragraph 5-35. This procedure should only be used if the station standard is known to be accurate and of a stability (aging rate) better than $1 \times 10^{-9} /$ day, such as a precision ovenized quartz crystal, cesium beam, or rubidium beam standard. The 1024 should be operated continuously (AC line power on) for a minimum of three days to allow the internal 5 MHz crystal oscillator to stabilize before calibrating.

5-35. CALIBRATION PROCEDURE.

a. Carefully remove the top cover of the 1024 sweep generator with the AC line power left on, after the 1024 has been running for at least three days.
b. Connect the 1024 rear panel jack J5 (5 MHz out BNC) to channel 2 of a dual channel oscilloscope.
c. Connect channel 1 of the scope to the station (either 1 or 5 MHz).
d. Set the scope for either ALTERNATE or CHOP sweep mode, triggering on channel 1 only; i.e. trigger scope on station standard only. Set scope time base to 0.1 us/div.
e. Adjust scope trigger level control to obtain a steady scope display of the station standard waveform (1 or 5 MHz) on channel 1.
f. The 5 MHz TCS-4B output from 1024-J5 on channel 2 of the scope should be a 5 MHz pulse stream about 4 volts peak-to-peak in amplitude that appears to drift or slide to the right or left relative to the house standard. The rate of drift is proportional to the frequency error of the 1024 crystal oscillator. If the error is large, the waveform on scope channel 2 will drift by so rapidly that the waveform will appear as a blur.
g. Center the 1024 front panel STD ADJ potentiometer by inserting a small blade screwdriver and turn the potentiometer 20 turns counterclockwise and then back 10 turns clockwise.
h. Adjust the 1024 frequency standard coarse adjust potentiometer in the frequency standard module (1A3) until the waveform on scope channel 2 appears to stand still or drift very slowly relative to channel 1. The coarse adjust potentiometer is accessible through a small hole in the frequency standard module cover.
i. An acceptable drift rate is no more than one cycle of the 10245 MHz waveform drifting off the scope screen every 30 seconds, assuming the scope time base is set to 0.1 us/division. The direction of drift (right or left) does not matter.
j. Wait 30 minutes and repeat steps h and i. Fine adjustment to correct minor drift may be made with the 1024 front panel STD ADJ potentiometer.
k. Wait 30 minutes and verify that drift rate remains acceptable. Make fine adjustment if necessary.

1. Replace 1024 top cover. Calibration is complete.

5-36. 1024 POWER SUPPLY ADJUSTMENTS (S/N 400100 and before). The 1024 has two power supply adjustments. One is to adjust the +5 volt standby power supply for the timing circuits and is designated +5 V B. The other adjustment is for the AC input power in the event that the available line voltage is lower than the acceptable limits for nominal 115 or 230 VAC input.

WARNING

Use extreme care when making internal adjustments with power on. Potentially lethal voltages are present in the transmitter.
$5-37$. +5 V B REGULATION. Measurement of the +5 V B power is accomplished at the +5 V B test point on the transmit logic module 1A2 figure 5-10). If adjustment of the +5 V B supply is necessary, perform the following steps:
a. Remove four screws securing the frequency standard 1A3 to the chassis plate of the 1024 .
b. Turn the assembly upside down to allow access to the +5 V switching regulator 1A3A3.
c. Adjust +5 V B at R 7 on assembly 1A3A3 fiqure FO-35).

5-38. AC INPUT ADJUSTMENT. This adjustment involves connection of a low-line tap to compensate for line voltage variations that are below acceptable limits. The 1024 operates satisfactorily when the main line input is between 110 and 125 volts (for 115 V position of line voltage select toggle switch) or 215 to 250 volts (for 230 V position). Use of the low-line tap (220-105) is only necessary if line voltages lower than 110V (or 215 V) are expected. To make this adjustment, disconnect wire at TB1, pin 1 that goes to switch S1 (power), and connect wire to TB1, pin 2 (figure FO-34).

5-39. 5018 POWER SUPPLY ADJUSTMENT (S/N 400100 and before). The 5018 has six power supply adjustments, five controls to adjust the +27.1 volt regulators supplying the driver amplifier and individual power amplifier modules, and one for controlling main line AC deviations from the nominal 115 or 230 VAC standard.

FIGURE 5-9. Harmonics /Spurious Response Test Set -Up.

5-40. +27.1 VDC REGULATORS. The five potentiometers for adjustment of the +27.1 VDC regulators are R31, R33, R35, R37, and R39, located on the power regulator assembly 2A2A4 (figure FO-34). R35 adjusts the driver amplifier supply. To measure 27.1 VDC ± 0.2, connect a voltmeter to 2A1J4 as follows: J4-B for R31; J4-A for R33; J4-E for R35; J4-C for R37; and J4-D for R39. If adjustment is required, perform the following steps:
a. Disconnect connectors 2A1J1, J2, and J3.
b. Remove the ten screws securing the 2A1 assembly to the 5018 chassis, and lift out 2A1.
c. Connect a jumper between the $2 A 1$ assembly and 5018 chassis.
d. Adjust potentiometers R31, R33, R35, R37, and R39 while measuring their respective voltages at 2A1J4.

5-41. AC INPUT ADJUSTMENT. Variations in line voltage can be accommodated by adjusting the position of taps on the transformer primary. The adjustment is made on assembly 2A2 (fiqure F0-34) by unsoldering the standard 115/230 volt connections at pins 4 and 9 of T 1 and moving higher or lower in voltage as required. With voltages less than 110 or 215 volts anticipated, move connections on respective primary taps to pins 3 and 8. With voltages greater than 120 or 250 volts anticipated, move connections to pins 5 and 10.

*Program/RUN switch in Program Position

FIGURE 5-10. Test Point Verification for Transmit Logic 1A2 (S/N 400100 and before).

6-1. WIRE LIST INDEX. Wire lists for the TCS-4B are compiled in this section and sequenced as indicated below:

NOTE Sweep Synthesizer Assy (5030-1101) in figure $\mathrm{FO}-6.7$.	
Title	Page
TCS-4B Chirpsounder Transmitter (9126-1000)	6-2
TCS-4B Chirpsounder Transmitter (9126-1100)	6-3
1024 Sweep Generator - Unit 1 (1024-1000 and 1024-1100)	6-
Sweep Synthesizer Assy (5030-1001) (5 Sheets)	6-5
Transmit Logic Assy (1024-1002) (7 Sheets) ($\mathrm{S} / \mathrm{N} 400101$ and on).	
Frequency Standard Assy (6025-1006) (2 Sheets) (S/N 400101 and on)	
Battery Supply Assy (6025-1008)	6-19
Battery Supply Assy (6025-1018)	6-20
Numeric Display Assy (6025-1009) (2 Sheets)	6-21
Subpanel Controls Assy (1024-1006) (4 Sheets)	6-23
Enclosure Assy (1024-1007) (2 Sheets) (S/N 400101 and on) .	
Harness Assy (1024-1010) (6 Sheets)	6-29
Front Panel Assy (1024-1008)..	6-35
Rear Panel Assy (1024-1009) (5 Sheets) (S/N 400101 and on)	
5018 Power Amplifier - Unit 2 (5018-1000)	6-41
Amplifier Assy (5018-1001).	6-42
Power Supply Assy (5018-1002) (4 Sheets) (S/N 400101 and on)	
Enclosure Assy (5018-1003)	6-47
Rear Panel Assy (5018-1004) (2 Sheets) 6 6-48	
Voltage Regulator (5018-1005)	6-50
Voltage Regulator (5018-1006) . 6 6-51	
4011 Filter/Diplexer - Unit 3 (4011-1000and 4011-1120) .	
RF Coupling Assy (4011-1001 and 4011-1101)	6-53
Filter/Diplexer Control Assy (4011-1002) (3 Sheets) 6-54	
Filter Set Assy (4011-1004) (S/N 400101 and on)	6-57
Filter Set Assy (4011-1104) (2 Sheets) 6-58	
Filter Decode Assy (4011-1007) (3 Sheets) 6-60	
Front Panel Assy (4011-1009)	6-63
Rear Panel Assy (4011-1010) (2 Sheets) 6-64	
Transmit Logic Assy (1024-1002) (7 Sheets) (s/N 400100 and before)	
Frequency Standard Assy (6025-1006) (3 Sheets) (S/N 400100 and before)	

Title Page
Enclosure Assy (1024-1007) (11 Sheets)
(S/N 400100 and before) 6-76
Rear Panel Assy (1024-1009) (5 Sheets)
(S/N 400100 and before) 6-87
Power Supply Assy (5018-1002) (6 Sheets) (S/N 400100 and before) 6-92
Filter Set Assy (4011-1004) (2 Sheets)
(S/N 400100 and before) 6-98

1024 Sweep Generator - Unit 1 (1024-1000 and 1024-1100)

Sweep Synthesizer Assy (5030-1001) (Sheet 1 of 5)

$\left\|\begin{array}{c} \text { WIRE } \\ \text { NO } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { ITEM } \\ \text { № } \end{gathered}\right.$	¢	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	C	REMARKS	
24	9	207	J1	26	Al	E6		SPS (III FOR SWEEPING)	
25	9	908	J1	27	Al	E84		E.O.S./END OF SWEEP	
26	9	912	J1	28	Al	E82		BKI/BLANK IN	
27	9	913	J1	29	Al	E91		BKO/BLANK OUT	
28	9	914	J1	30	Al	E83		BKC/BLANK CLK	
29	9	915	J1	31	A1	E105		GATE IN/END OF SWEEPBLANKING	
30	9	916	J1	32	A2	E17		OOL/OUT OF LOCK	
31	9	917	J1	33	A1	E6		SRS (HI FOR S!VEEPING)	
32	9	918	J1	34	A1	E6		SRS (HI FOP SVEEPING)	
33	9	923	J1	35	Al	E. 6		SRS (HI FOR SNEEPING)	
34	9	924	J1	36	Al	El03		PAD	
35	9	925	J1	37	Al	E90		NEW BLANK (6) KHz B.N.)	
36	9	925	A2.	E13	A1	E56		SD"1" (TO SYNTH)	
37	9	926	A2	El4	Al	E. 59		SD"2" (TO SYNTH)	
38	9	927	A2	E15	A1	E60		SD"4" ('O SYNTH)	
39	9	928	A2	E16	A1	E61		SD"8" (TO SYNTH)	
40	9	90	A2	El2	Al	E62		CLK (FROM SYNTH)	
41	9	91	A2	E3	Al	E 38		T]	
42	9	92	A2	E4	Al	E37		T2	
43	9	93	A2	E5	Al	E36		T3	
44	9	94	A2	E6	Al	E35		T4	
45	9	95	A2	E7	Al	$E 87$		T5	
46	9	96	A2	E8	Al	E39		T6	
47	9	97	A2	E9	A1	E85		$\bigcirc 7$	
48	2	98	A2	E10	Al	E86		T8	
					$\left[\begin{array}{c} \operatorname{sizE} \\ A \end{array}\right.$	$\begin{aligned} & \text { CDOE IDENT NQ } \\ & \mathbf{3 3 7 8 3} \\ & \hline \end{aligned}$		$\begin{array}{ll} \hline \text { DWG NQ } & \\ \text { W/L } & 5030-1001 \end{array}$	REV
								SHEET 3 OF 6	

Sweep Synthesizer Assy (5030-1001) (Sheet 2 of 5)

Sweep Synthesizer Assy (5030-1001) (Sheet 3 of 5)

Sweep Synthesizer Assy (5030-1001) (Sheet 4 of 5)

	Trad		${ }_{\text {nup }}^{\text {p/ }}$	Otice	\|om		пеманкк
9	,	n	22	\cdots	23		+120
8	\% ${ }^{\text {a }}$	${ }^{1}$	2	\cdots	${ }^{22}$		${ }_{4}+1 \times$
9	-	a	25	${ }^{2}$	${ }^{26}$		
200	${ }^{-1}$		${ }_{88}$	$\stackrel{1}{ }$	an		*
101	\%		eso	${ }^{\text {A2 }}$	123		eno

Transmit Logic Assy (1024-1002) (Sheet l of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 2 of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 3 of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 4 of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 5 of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 6 of 7) (S/N 400101 and on)

Transmit Logic Assy (1024-1002) (Sheet 7 of 7) (S/N 400101 and on)

WIRE No	$\begin{gathered} \text { ITEM } \\ \text { NO } \end{gathered}$		FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	C	REMARKS		
26	37	8	FL	2	A3	E2		+5VB		
					$\begin{gathered} \text { SIZE } \\ A \end{gathered}$	$\begin{aligned} & \text { ODE } 10 \\ & 337 \end{aligned}$	$\begin{aligned} & \text { NT No } \\ & 83 \end{aligned}$			[REV
										3

[^0]| | WIRE | (TEM | δ δ 8 | FROM DEVICE | $\begin{array}{\|c\|c\|} \hline \text { PIN } \\ \mathrm{NO} \\ \hline \end{array}$ | $\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$ | $\begin{array}{\|c\|c\|} \hline \text { PN } \\ \mathrm{NO} \\ \hline \end{array}$ | TO | $\begin{array}{\|l\|} \hline \mathbf{P N O} \\ \mathrm{NO} \\ \hline \end{array}$ | TO | $\begin{array}{\|l\|} \hline \text { PNO } \\ \mathrm{NO} \\ \hline \end{array}$ | 10 | P\% | Henata | Remarks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 19 | 0 | E1 | | P1 | 1 | P1 | 2 | | | | | | GND | |
| | 2 | | 7 | E4 | | P1 | 3 | | | | | | | | +35 | |
| | 3 | 30 | | P1 | 3 | P1 | 4 | P1 | 5 | | | | | | JUMPER | |
| | 4 | | | E2 | | E3 | | | | | | | | | | |
| \% | 5 | | | P1 | 8 | F1 | | | | | | | | | FUSE | |
| $\stackrel{\stackrel{7}{\mathbb{D}}}{\stackrel{1}{2}}$ | 6 | | | P1 | 3 | F1 | | | | | | | | | FUSE | |
| 0 | | | | | | | | | | | | | | | | |
| $\frac{\stackrel{C}{0}}{\underline{0}}$ | | | | | | | | | | | | | | | | |
| $\stackrel{\sim}{<}$ | | | | | | | | | | | | | | | | |
| $\underset{\sim}{\text { N/ }}$ | | | | | | | | | | | | | | | | |
| ఠ | | | | | | | | | | | | | | | | |
| $\begin{aligned} & \text { O} \\ & \text { N్ర } \end{aligned}$ | | | | | | | | | | | | | | | | |
| $\stackrel{1}{\circ}$ | | | | | | | | | | | | | | | | |
| 0 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | $\sqrt{\text { seve }}$ | $\begin{aligned} & \text { cose } \\ & \mathbf{3 3} \end{aligned}$ | | $W^{\text {GWGGE}}$ | 6025-1008 | $\left[\begin{array}{l} \text { rev } \\ B \end{array}\right.$ |
| | | | | | | | | | | | | | | | Is | |

Battery Supply (6025-1018)

Numeric Display Assy (6025-1009) (Sheet 1 of 2)

Numeric Display Assy (6025-1009) (Sheet 2 of 2)

Subpanel Controls Assy (1024-1006) (Sheet 1 of 4)

WIRE No	$\begin{array}{\|l\|} \hline \text { ITEM } \\ \text { NO } \\ \hline \end{array}$	c 0 0 0	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \\ & \hline \end{aligned}$	E N ¢ H	REMARKS	
10	31		S14	2	S15	2		PSC	
10	31		S15	2	S16	2		PSC	
10	31		S16	2	S17	2		PSC	
10	31		S17	2	S18	2		PSC	
10	31		S18	2	S19	2		PSC	
10	31		S19	2	S20	2		PSC	
10	31		S20	2	S21	2		PSC	
10	31		S21	2	S22	2		PSC	
10	31		S22	2	S23	2		PSC	
10	31		S23	2	S24	2		PSC	
11	17	92	P1	1	S14.	\bar{I}		781	
12	17	93	P1	2	SIA	$\overline{2}$		7P2	
13	17	94	P1	3	SLA	4		7P4	
14	17	95	P1	4	SIA	$\overline{8}$		7P8	
15	17	96	P1	5	S1B	I		6P1	
16	17	97	P1	6	S1B	$\overline{2}$		6P2	
17	17	98	P1	7	S1B	$\frac{4}{4}$		6P4	
18	17	901	P1	8	S1B	$\overline{8}$		6P8	
19	17	902	P1	9	S1C	I		5P1	
20	17	903	P1	10	S1C	$\overline{2}$		5P2	
21	17	904	P1	11	S1C	4		5P4	
22	17	905	P1	12	S1C	$\overline{8}$		5P8	
23	17	906	P1	13	S1D	I		4P1	
24	17	907	P1	14	S1D	$\overline{2}$		4P2	
25	17	908	P1	15	S1D	4		$4 \mathrm{P4}$	
-					$\begin{gathered} \mathrm{SizE} \\ \mathbf{A} \end{gathered}$	COOE IDENT NQ 33783		DWG No $\mathbf{V}^{1024-1006}$	REV K
								SHEE	5

Subpanel Controls Assy (1024-1006) (Sheet 2 of 4)

WIRE №	$\begin{gathered} \text { ITEM } \\ \text { NO } \\ \hline \end{gathered}$	c 0 0 0	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { No } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { DEVICE } \end{gathered}$	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	C	REMARKS		
26	17	912	P1	16	SID	$\overline{8}$		4P8		
27	17	913	P1	17	S1E	1				
28	17	914	P1	18	SIE	2		CS2		
29	17	915	P1	19	S1E	4		CS4		
30	17	916	P1	20	S1E	8		CS8		
31	17	918	P1	22	S3	2		ME2		
32	17	923	P1	23	S4	2		DM1		
33	17	924	P1	24	S5	3		100 kHz (GND)		
34	17	925	P1	25	S6	1		Prog/RUN		
35	17	928	P1	26	S8	1		DIRECT (GND)		
36	17	91	P1	27	S9	4		PAD		
37	17	92	P1	28	S10	5		ST1		
38	17	93	P1	29	S10	6		ST2		
39	17	94	P1	30	S11	5		SP1		
40	17	95	P1	31	S11	6		SP2		
41	17	96	P1	32	S12	6		RE1		
42	17	97	P1	33	S12	5		RE2		
43	17	98	P1	34	S10	4		START LAMP		
44	17	901	P1	35	S11	4		STOP LAMP		
45	17	902	P1	36	S12	4		RESET LAMP		
46	17	903	P1	37	S2	1		CONT		
47	17	904	P1	38	S2	2		MAN		
48	17	905	P1	39	S2	3		SET		
49	17	906	P1	40	S2	4		PROG		
50	17	907	P1	41	S25	3		AT1		
			迷						SHEET ${ }^{4}$ OF 5	

Subpanel Controls Assy (1024-1006) (Sheet 3 of 4)

Subpanel Controls Assy (1024-1006) (Sheet 4 of 4)

Enclosure Assy (1024-1007) (Sheet 1 of 2) (S/N 400101 and on)

Enclosure Assy (1024-1007) (Sheet 2 of 2) (S/N 400101 and on)

Harness Assy (1024-1010) (Sheet 1 of 6)

$\left\lvert\, \begin{gathered} \text { WIRE } \\ \text { NO } \end{gathered}\right.$		6 6 6	$\begin{aligned} & \text { FROM } \\ & \text { DEVICE } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { DEVICE } \end{gathered}$	$\begin{aligned} & \text { PYN } \\ & \text { NO } \end{aligned}$	L E N G T	REMARKS	
26	32	0	19	26	J2	2		DLRECT (GND)	
27	38	905	J9	27	P6	36		PAD	
28	38	906	J9	28	P13	11		ST1	
29	38	907	J9	29	P13	12		ST2	
30	38	908	J9	30	P13	13		SP1	
31	38	912	J9	31	P13	14		SP2	
32	38	913	J9	32	P13	15		RE1	
33	38	914	J9	33	P13	16		RE2	
34	38	925	J9	34	P13	23		STL	
35	38	926	J9	35	P13	24		SPL	
36	38	927	J9	36	P13	25		REL	
37	38	915	J9	37	P13	17		CONT	
38	38	916	J9	38	P13	18		MAN	
39	38	917	J9	39	P13	19		SET	
40	38	918	J9	40	P13	20		PROG	
41	38	923	J9	41	P13	21		AT 1	
42	38	924	J9	42	P13	22		AT 2	
43	38	928	J9	43	P13	36		PSC	
44	38	90	J9	44	813	37		P00	
45	38	91	J9	45	P13	38		P05	
46	38	92	J9	46	P13	39		P10	
47	38	93	J9	47	P13	40		P15	
48	38	94	J9	48	P13	41		P20	
49	38	95	$J 9$	49	P13	42		P25	
50	38	96	J9	50	P13	43		P30	
					$\begin{gathered} \operatorname{sizE} \\ A \end{gathered}$			DWG NQ REV $M / L 1024-1010$ A	
- ${ }^{\text {SMEET }{ }^{3} \text { O_O_ } 71}$									

Harness Assy (1024-1010) (Sheet 2 of 6)

WIRE №	$\begin{array}{\|l\|} \hline \text { ITEM } \\ \text { No } \\ \hline \end{array}$	c 0 0	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	PIN NO	L E C H	REMARKS	
51	38	97	J9	51	P13	44		P35	
52	38	98	J9	52	P13	45		P40	
53	38	901	J9	53	P13	46		P45	
54	38	902	J9	54	P13	47		P50	
55	38	903	J9	55	113	48		P55	
56	37	7	J8	3	P2	3		BATT	
57	37	7	J8	4	P2	3		BATT	
58	37	7	J8	5	P10	5		BATT (ON)	
59	37	7	J8	6	P10	6		BATT (ON)	
60	37	7	J8	7	P3	29		batt (on)	
61	38	901	J8	8	J7	11		METER (-)	
62									
63	37	5	J7	2	P10	12		+8V	
64	38	90	J7	3	J2	3		FORWARD PWR	
65	38	91	J7	4	J2	4		REFLECTED PWR	
66	38	904	$J 7$	5	P3	32		TEST SW. A	
67	38	905	J7	6	P3	33		BTG	
68	38	906	J7	7	P3	34		BTR	
69	38	907	J7	8	P3	35		CTG	
70	38	908	37	9	P3	36		CTR	
71	38	90	$J 7$	10	P10	10		STD ADJUST	
72	38	918	J7	12	P13	55		TEST SW. B	
73	38	0	$J 7$	13	P10	2		STD ADJUST GND	
74	38	5	J7	14	P10	9		+5 VB	
75	37	0	P14	1	P6	1		GND	
SIZE COELIDENT NQ A 33783 WWG NQ									AEV
SMEET_ 4 OFI 7									

Harness Assy (1024-1010) (Sheet 4 of 6)

WIRE №	$\left\lvert\, \begin{aligned} & \text { ITEN } \\ & \text { № } \end{aligned}\right.$	C 0 O	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	ro DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { No } \end{aligned}$	L E N O H	REMARKS	
101	37	0	P15	12	J8	2		Lamp Return	
102	37	0	P15	13	J 7	1		GND	
103	37	0	P15	14	J2	5		GND	
104									
105									
106									
107	38	91	J4		P13	26		1PPS	
108	39		J3		P8			RF-2W	
109	38	92	J2	1	P6	29		Latch; BKO	
110									
111	37	5	P13	4	P10	8		+5VB	
112	38	904	P13	27	P6	26		SRS	
113	38	903	P13	33	P6	25		RES	
114	38	902	P13	34	P6	24		STP	
115	38	901	P13	35	P6	23		STR	
116									
117	38	98	P13	50	P6	22		AST	
118	38	905	P13	51	P6	27		EOS	
119	38	906	P13	54	P6	37		BLANK (NEW)	
120	38	912	P13	53	P6	31		ESB	
121									
122	39		P12		P7			5 MHz	
123	39		P11		P5				
124									
125									
					$\begin{gathered} \mathrm{SIZE} \\ \mathrm{~A}^{2} \end{gathered}$	$\begin{aligned} & \text { COOE } 11 \\ & 33 \end{aligned}$	$\begin{aligned} & \text { NT No } \\ & 83 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { DWG No } & \\ \text { W/L } 1024-1010 \end{array}\right.$	REV
								SH	SHEET 6 OF 7

Harness Assy (1024-1010) (Sheet 5 of 6)

Harness Assy (1024-1010) (Sheet 6 of 6)

Front Panel Assy (1024-1008)

Rear Panel Assy (1024-1009) (Sheet 1 of 5) (S/N 400101 and on)

Rear Panel Assy (1024-1009) (Sheet 2 of 5) (S/N 400101 and on)

WIRE NO	$\left\lvert\, \begin{aligned} & \text { ITEN } \\ & \text { No } \end{aligned}\right.$	¢ 0 0 R	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	PIN №	L N \mathbf{C} \mathbf{H}	REMARKS		
14	48	0	Al	E6	C3	-		GND		
15	48	0	A1	E4	C4	$+$		GND		
16	48	0	A1	E2	C5	-		GND		
17	49	1	CR1	$+$	311	7		+5VC (Unreg)		
18	48	1	CR1	+	Cl	4		+5VC (Unreg)		
19	48	209	CR2	+	C2	\pm		+11VC (Unreg)		
20	48	209	CR2	\pm	XU3	B		+1IVC (Unreg)		
21	48	31	A1	$E 5$	C3	+		+20VC (Unreg)		
22	48	31	A1	$E 5$	XU4	B		+20VC (Unreg)		
23	48	609	A1	E3	C4	-		-20VC (Unreg)		
24	48	609	A1	E3	XU5	C		-20VC (Unreg)		
25	49	6	A1	E3	311	8		-20VC (Unreg)		
26	48	8	A1	E1	C5	$+$		+35VC (Unreg)		
27	49	8	A1	E1	XU6	B		+35VC (Unreg)		
28	49	8	XU6	B	J6	8		+35VC (Unreg)		
29	49	8	A1	$E 1$	J5	8		+35VC (Unreg)		
30	49	8	J 5	8	J5	9		+35VC (Unreg)		
31	49	4	XU6	E	J5	7		+24VA (Reg)		
32	49	4	XU6	E	J6	7.		+24VA (Reg)		
33	49	6	XU5	E	J5	6		-12VA (Reg)		
34	49	6	XU5	E	J6	6		-12VA (Reg)		
35	49	3	XU4	ε	J5	5		+12VA (Reg)		
36	49	3	XU4	E	J6	5		+12VA (Reg)		
37	49	2	XU3	E	J6	3		+5A (Reg)		
38	49	2	XU2	E	35	3		+5A (Reg)		
					$\begin{gathered} \text { SIZE } \\ A \end{gathered}$	CODE IDENT No 33783		DWG No WL 1024-1009		$\begin{array}{\|c} \mathrm{REV} \\ \mathrm{E} \end{array}$
			-	-					SHEET 4 OF 6	

Rear Panel Assy (1024-1009) (Sheet 3 of 5) (S/N 400101 and on)

WIRE NO	$\left\lvert\, \begin{aligned} & \text { ITEM } \\ & \mathrm{NO} \end{aligned}\right.$	C 0 0	FROM DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	TO DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	L N C T H	REMARKS	
39	49	2	XU2	E	J6	4		+5VA (Reg)	
40	49	2	XU1	E	J5	4		+5VA (Reg)	
41	49	0	E1		$J 5$	1		GND	
42	49	0	E1		35	2		GND	
43	42	0	E1		J 5	11		GND	
44	49	0	E1		$J 5$	12		GND	
45	49	0	E1		J6	1		GND	
46	49	0	E1		J6	2		GND	
47	49	0	E1		J6	9		GND	
48	49	0	E1		J6	11		Lamp Return	
49	49	0	E1		J6	12		GND	
50	49	1	E1		J6	13		GND	
51	49	0	E1		J6	14		GND	
		8	T1		P17	1		240-Hot 2	
		98	T1		P17	2		220 - Hot 2	
		9	T1		P17	3		115-Hot 2	
		90	T1		P17	4		105-Hot 2	
		0	T1		P17	5		Line In - Common 2	
52	48	9	J1	A	XFI	1		Line In - Hot 2	
53	50	9	XF1	2	311	9		Line In - Hot $\quad 2$	
53	50	0	J1	C	311	5		Line In - Common $\quad 2$	
54	48	5	31	B	311	6		GND	
55	48	5	J1	B	E2			GND	
56	49	1	CR1	+	J5	10		+5VC (Unreg)	
57	49	1	CR1	+	J6	10		+5VC (Unreg)	
					SIZE A	$\begin{aligned} & \text { COOE IOENT NO } \\ & 33783 \end{aligned}$		$\begin{aligned} & \text { OWG NO } \\ & \text { WVL 1024-1009 } \end{aligned}$	REV E
SHEET 5 OF 6									

Rear Panel Assy (1024-1009) (Sheet 4 of 5) (S/N 400101 and on)

[^1]

5018 Power Amplifier- Unit 2 (5018-1000)

Power Supply Assy (5018-1002) (Sheet 1 of 4) (S/N 400101 and on)

Power Supply Assy (5018-1002) (Sheet 2 of 4) (S/N 400101 and on)

Rear Panel Assy (5018-1004) (Sheet 1 of 2)

		$\underbrace{\text { fevice }}_{\text {frome }}$	\|rem	oxice	${ }_{\text {com }}^{\text {pom }}$		пееапак
				${ }^{\text {i }}$	-		$12 / \mathrm{cac}$ arer
	2.	\cdots		\%		ut	107 nc.amax
	,	-				${ }^{2+}$	
${ }^{5}$	2	-s		${ }^{25}$		${ }^{15}$	ts me

Rear Panel Assy (5018-1004) (Sheet 2 of 2)

Voltage Regulator (5018-1005)

		$\underbrace{\substack{\text { fexuce }}}_{\text {from }}$	${ }^{\text {pum }}$	$\xrightarrow{\text { ofuce }}$	Pme		пемаккs
		${ }^{12}$					
	${ }^{17}$	${ }_{8}$				${ }^{2}$	
2	${ }^{+}$	${ }^{8} 2$				${ }^{2}$	
3							
4	${ }^{17} 9$	${ }^{\text {E }}$				${ }^{*}$	
5	${ }^{+}{ }^{\circ}$	${ }_{4}{ }^{\text {a }}$				${ }^{2}$	
$\square{ }^{\square}$							

```
Voltage Regulator (5018-1006)
```


WIRE Nㅡ	$\left[\begin{array}{l} \text { TTEM } \\ \mathrm{NO} \end{array}\right.$	0 0 0	FROM DEVICE	$\left\|\begin{array}{l} \text { PIN } \\ \text { NO } \end{array}\right\|$	TO DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	N N C H	REMARKS	
1	13	22	K 1	El	K2	E1		COIL CONHECT + 26 VDC	
2	13	90	K1	E2	K2	E2		COIL COMMECT RETURN	
3	13	93	A3	C1	K2-J4	A		FORUARD POWER	
4	13	94	A3	C2	K2-J4	D		REFLECTED POWER	
5									
6									
7	14		P1		P7	$21 "$		RF CIHIRP TO KI	
8	14		P2		P8	12"		RF CHIRP TO DIPLEXER	
9	14		P3		P4	$12^{\prime \prime}$		RF CHIRP TO K2	
10	15		P5		P9	12"		RF COMM TO K2	
11	14		P10		P6	111		RF CHIRP TO PWR DET.	
12	14		P11		P12	18"		RF CHIRP TO LOAD	
					$-\begin{gathered} S 12 E \\ A \end{gathered}$	$\begin{aligned} & \text { Coob iof } \\ & 337 \end{aligned}$		$\begin{aligned} & \hline \text { OWG No } \quad \begin{array}{l} 4011-1001 \end{array} \text { and } \\ & \mathbf{W} L \quad 4011-1101 \end{aligned}$	[$\begin{gathered}\text { AEV } \\ \text { F }\end{gathered}$
								SHEET	2

RF Coupling Assy (4011-1001 and 4011-1101)

Filter/Diplexer Control Assy (4011-1002) (Sheet 3 of 3)

	$\left.\right\|_{\mathrm{N},} ^{\text {WIRE }}$	$\begin{array}{\|c\|c\|} \substack{\text { NEM }} \end{array}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 8 \end{aligned}$	FROM DEVICE	$\begin{array}{\|l\|l\|} \hline \text { PIN } \\ \text { Nog } \\ \hline \end{array}$	$\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|} \text { PiN } \\ \text { NOO } \end{array}$	то	$\left\|\begin{array}{c} \text { PIN } \\ \text { Nos } \end{array}\right\|$	TO	PIN No	TO	$\begin{array}{\|l\|} \hline \text { PiN } \\ \text { NO } \end{array}$	Length	REMARKS
	1	36	1	J2	1	A2	E1								
	2	36	2	J2	2	A2	E2								Filter Select \#2
7	3	36	3	J2	3	A2	E3								Filter Select \#3
¢	4	36	4	J2	4	A2	E4								Filter Select \#4
$\begin{aligned} & \infty \\ & \oplus \end{aligned}$	5	36	5	J2	5	Al	E5								Filter Select \#5
¢	6	36	6	J2	6	Al	E6								Filter Select \#6
$\stackrel{ }{\sim}$	7	36	7	32	7	A1	E7								Filter Select \#7
夲	8	36	8	J2	8	A1	E8								Filter Select \#8
$\stackrel{\rightharpoonup}{\square}$	9	36	9	J2	9	A1	E9	A2	E9						-240V Bias
¢	10	36	9	Al	E17	Al	$E 18$	A1	E19	A1	E20				-240 V Buss (Ref)
0	11	36	9	A2	E21	A2	E22	A2	A23	A2	E24				-240V Buss (Ref)
Z	12	37	Bare	J3	Sig	A1	E14								RF Out (Ref)
$\stackrel{\text { O }}{8}$	13	$\begin{array}{\|c\|} \hline \text { A1 } \\ \hline \end{array}$		J1	Sig	A1	C 20	\{C20 connel	ts	11 to PCB)					$\mathrm{RF} \mathrm{In}^{\text {In }}$
$\stackrel{\square}{\square}$	14	36	¢	J2	10	A1	TP3	A 2	TP3						Ground
0															
\bigcirc															
-															
											$\left[\begin{array}{c} \mathrm{SI2G} \\ \mathbf{A} \end{array}\right]$	$\begin{aligned} & \text { Coob } \\ & 337 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~N}, \\ & \hline 3 \end{aligned}$	WL	4011-1004 GEV
															$1 \mathrm{SHEET}^{2}-\mathrm{OF}-2$

	WIRE	[IEM	C 0 1 0 0	$\begin{aligned} & \text { FROM } \\ & \text { DEVICE } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \mathrm{NO} \end{aligned}$	TO DEVICE	$\left\lvert\, \begin{aligned} & P N \\ & M O \end{aligned}\right.$	TO	$\begin{aligned} & \text { PIN } \\ & \text { NQ } \end{aligned}$	TO	$\begin{aligned} & \text { PIN } \\ & \text { NOS } \end{aligned}$	TO	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	Lengith	REMARKS
	1	36	1	12	1	$\wedge 2$	F. 1								Filter Select \#1 ${ }^{\text {- }}$ - 6
	2	36	$?$	J2	2	A?	F. 2								Filter Select 2
	3	36	3	. 12	3	$\Lambda 2$	E 3								Filter Select. ${ }^{\text {a }}$
T1	4	36	4	12	4	A2	E4								Filter Select \#4
(1)	5	36	5	J2	5	Al	ES								Filter Select \#5
$\xrightarrow{(1)}$	6	36	6	J 2	6	A1	E6								Filter Select \#6
¢ 0	7	36	7	J2	7	A1	E 7								Filter Select \#7
$<$	8	36	8	J2	8	A1	E8								Filter Select \#8
$\underset{\sim}{\square}$	9	36	9	J2	9	$\wedge 1$	E9	A2	E9						-240v Bias
$\stackrel{1}{ \pm}$	10	36	9	$\wedge 1$	E17	$\wedge 1$	E18	Al	E19	$\wedge 1$	E20				-240r Buss (Ref)
$\stackrel{\ominus}{+}$	11	36	9	A2	E21	$\wedge 2$	E22	A2	A23	A2	E24				-240 Buss (Ref)
O	12	37	Bare	J3	Sig	Al	E 14								RF Out (Ref)
- ${ }_{\text {(1) }}^{\text {¢ }}$	13	$\begin{aligned} & \hline \mathrm{Al} \\ & \mathrm{C} 20 \\ & \hline \end{aligned}$		$J 1$	Sid	$\wedge 1$	C20	(c.20 conne dt	ts 11	to PCB)					RF In
-	14	36	0	J2	10	Al	TP3	$\Lambda 2$	TP3						GROUND
$\xrightarrow{\circ}$	15	36	9	J3		Al	E 1								GROUND
N	16	36	9	J1		Al	E11								GROUND
	17	37		$\wedge 3$	E1	A1	E41								
															4011-1104 $A^{\text {REV }}$
															SMEET 2 of

	WIRE	L1Em	8 0 0	FROM DEVICE	$\left\lvert\, \begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}\right.$	TO DEVICE	$\begin{aligned} & \mathrm{PN} \\ & \mathrm{NO} \end{aligned}$	TO'	$\begin{aligned} & \text { PYN } \\ & \text { NR } \end{aligned}$	TO	$\left\lvert\, \begin{aligned} & \text { PN } \\ & \text { NO } \end{aligned}\right.$	TO	$\left\lvert\, \begin{aligned} & \text { PIN } \\ & \text { NQ } \end{aligned}\right.$	Lemgth	REM	:
	18	37		A3	E2	AI	E42									
	19	37		A3	E 3	Al	E40									
	20	37		A 3	E. 4	A1	E13									
	21	37		A3	E 5	Al	E44									
	22	37		$\wedge 3$	E6	A1	E43									
$\overline{\text { (1) }}$	23	37		A5	E1	A1	E 37									
ω	2.4	37		15	E2	$\wedge 1$	E 36									
$\stackrel{(1)}{+}$	25	37		$A 5$	E 3	Al	E10									
0 0 0	26	37		A5	E 5	A1	E 38									
$\stackrel{+}{\square}$	27	37		A5	E6	A1	E 39									
$\underset{\sim}{\square}$	28	37		M	I. 1	A2	E 35									
$\xrightarrow{ \pm}$	29	37		M	E2	A2	E33									
\pm	30	37		$n 4$	E 3	A2	E13									
\bigcirc	31	37		A	E 5	A2	E.42									
$\stackrel{(1)}{\text { ® }}$	32	37		A4	E6	A2	E40									
N	33	37		$\wedge 6$	E1	A2	[37									
\bigcirc	34	37		$\Lambda 6$	E 2	$\Lambda 2$	E 33									
\cdots	35	37		A6	E4	$\wedge 2$	E12									
	36	37		A6	E5	$\wedge 2$	E39									
	37	37		A6	E6	A2	E41									
											$\begin{gathered} S 12 E^{2} \\ A \end{gathered}$		3		-1104	Tici
															$\text { SAFEI } 3 \text { of }$	

Filter Decode Assy (4011-1007) (Sheet 1 of 3)

Filter Decode Assy (4011-1007) (Sheet 2 of 3)

	[rame	$\underbrace{\text { fevice }}_{\text {freme }}$	${ }_{\text {pen }}^{\text {pu }}$	Device	(pme		пеемans
		-		ciel			
A ${ }^{\text {An }} \mid$							

Filter Decode Assy (4011-1007) (Sheet 3 of 3)

Front Panel Assy (4011-1009)

Rear Panel Assy (4011-1010) (Sheet 1 of 2)

Rear Panel Assy (4011-1010) (Sheet 2 of 2)

Transmit Logic Assy (1024-1002) (Sheet 1 of 7) (S/N 40010 and before)

Transmit Logic Assy (1024-1002) (Sheet 2 of 7) (S/N 400100 and before)

Transmit Logic Assy (1024-1002) (Sheet 3 of 7) (S/N 400100 and before)

Transmit Logic Assy (1024-1002) (Sheet 4 of 7) (S/N 400100 and before)

Transmit Logic Assy (1024-1002) (Sheet 5 of 7) (S/N 400100 and before)

Transmit Logic Assy (1024- 1002) (Sheet 6 of 7) (S/N 400100 and before)

Transmit Logic Assy (1024-1002) (Sheet 7 of 7) (S/N 400100 and before)

Frequency Standard Assy (6025-1006) (Sheet 1 of 3) (S/N 400100 and before)

Frequency Standard Assy (6025-1006) (Sheet 2 of 3) (S/N 400100 and before

Nusf	mad		[mo	oetice	${ }_{\text {mo }}^{\text {po }}$		пемаккs
${ }^{49}$			83	${ }^{23}$	B		
50	${ }^{304}$	+	${ }^{\text {E }}$	-			
5	\checkmark, ${ }^{5}$	\checkmark	xc	\checkmark	-		
52		Q^{2}	c	${ }^{\text {Q }}$	c		sus couliecrons
53	${ }^{18} 9$	${ }_{\text {K1 }}$	1	${ }^{1010}$	ะ		
54				${ }_{k}$			Jumpr
${ }^{5}$	${ }^{18}$,	${ }^{11}$	Bar		
${ }_{56}$			4	${ }_{\text {k1 }}$	5		Јиирев
57	18	-	\%	ru			
58	${ }^{18}$	\checkmark	-	${ }_{\text {a }}$	anv		
$\square \square^{\square}$							

Frequency Standard Assy (6025-1006) (Sheet 3 of 3) (S/N 400100 and before)

0 0 0 0 8	$\underset{\substack{\text { WIRE } \\ \text { Ne }}}{ }$	\% ${ }_{\text {cem }}$	8 8 8	FROM	$\begin{array}{\|l\|} \hline \text { PiN } \\ \text { No } \\ \hline \end{array}$	DEVICE	$\begin{aligned} & \text { PIN } \\ & \text { NO } \end{aligned}$	T0	$\begin{array}{\|l\|} \hline P_{N} \\ N \end{array}$	TO	$\begin{array}{\|l\|l\|} \hline 1 \times N \\ M 0 \end{array}$	70	$\begin{array}{\|l\|l\|} \hline \mathrm{PNo} \\ \hline \end{array}$	\%evatu	REMARKS	
	37	26	¢	J5	1	P6	1								GND	
	38		ϕ		1		2								GND	
	39		2		2		3								+5A SYNTH	
\%	40		2		3		4								$+5 \mathrm{~A}$	
S	41		3		4		5								+12	
3	42		6		5		7								-12	
	43		4	1	6	1	8								+24	
$\stackrel{\rightharpoonup}{8}$	44		ϕ	P15	1	P13	1								GND TO PROG	
$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{\top} \\ & \underline{Q} \end{aligned}$	45		ϕ		1		2								"	
	46		2		6		3								+5A	
$\stackrel{+}{\underline{O}}$	47		1	\checkmark	5		5								+5C	
三	48		2	J5	2		6								+5D FOR TEST	
	49		3		4		7								+12	
$\stackrel{C}{2}$	50	\checkmark	6	\checkmark	5	\checkmark	8								-12	
σ																
O																
-																
$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{D} \\ & \stackrel{D}{D} \end{aligned}$																
											A	$\begin{aligned} & \text { cosel } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NThe } \\ & 33 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { WW } \\ & \mathbf{W} \end{aligned}\right.$	1024-1007	$\left.\right\|_{C} ^{\mathrm{KEV}}$
															SHEET 5	2

$\begin{array}{\|c\|c\|} \hline \text { Wine } \\ \mathrm{K} \mathrm{\Omega} \end{array}$	TTEM	\%	$\begin{aligned} & \text { FROM } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PN } \\ \text { MR } \\ \hline \end{array}$	$\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$	$\begin{aligned} & \mathrm{PNO} \\ & \mathrm{NO} \\ & \hline \end{aligned}$	T0	$\begin{aligned} & \mathrm{P} \times \mathrm{N} \\ & \mathrm{NO} \\ & \hline \end{aligned}$	T0	$\begin{array}{\|c\|} \hline \text { PNO } \\ \text { No } \end{array}$	70	mom	revatrs	REMARKS	
51	26	4	J5	6	P13	9								+24 FOR TEST	
52		8	P15	8	1	10								+35 "	
53		9		2	P10	1								GND TO FREQ	
54		ϕ		2		2								"	
55		8		9		3								+35 V	
56		8		9	1	4								"	
57		ϕ		3	TB1	4								GND TO BATT	
58		¢		4	P3	1								GND FOR 1A5 TH	1A2
59		1		5	1	5								$+5 \mathrm{C}$	
60		ϕ		4	J8	1								GND -2 WIRES	
61		ϕ		4	1	2								"	
62		¢	1	1	J7	1								"	
63		90	P6	9	P6	10									
64		7	P3	29	J8	7								BATT TO TEST	
65	\checkmark	97	P6	20	J9	24								UFL	
													${ }^{\text {Well Re }}$		
														TSHEET 6	12

$\begin{array}{\|c\|c\|} \text { WRE } \end{array}$	$\begin{gathered} 1 T \mathrm{EM} \\ \mathrm{NR} \\ \hline \end{gathered}$	8 8 8	FROM DEVICE	$\begin{array}{\|l\|} \hline \mathbf{P N O} \\ \mathrm{NO} \end{array}$	$\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{PLN} \\ \mathrm{MO} \\ \hline \end{array}$	T0	$\begin{aligned} & \hline \mathrm{Pnox} \\ & \mathrm{MO} \\ & \hline \end{aligned}$	T0		T0		cemery	REMARKS	
111	26	923	P13	21	J9	41								ADV. TIMER AT1	
112		924		22		42								AT2	
113		925		23		34								START LAMP	
114		926		24		35								STOP "	
115		927		25		36								RESET "	
116		928		36		43								TIME SW PSC COMM	
117		90		37		44								$\mathrm{P} \phi \phi$ - TIME SW	
118		91		38		45								P05	
119		92		39		46								P10	
120		93		40		47								P15	
121		94		41		48								P20	
122		95		42		49								P25	
123		96		43		50								P30	
124		97		44		51								P35	
125	5	98	t	45	1	52								P40	
										$\begin{aligned} & s \times 2 \\ & \mathbf{A} \\ & \hline \end{aligned}$	33783		$\left\lvert\, \begin{aligned} & \text { Pwid } \\ & \mathbf{W} \end{aligned}\right.$	1024-1007	$\underline{\text { rev }}$
														SHEET 10	-

T		$\left\|\begin{array}{c} 17 E N \\ N_{0} \end{array}\right\|$	8 8 8	FROM DEVICE	$\begin{array}{\|l\|} \hline P N \\ M O \\ \hline \end{array}$	TO	$\begin{aligned} & \text { PN } \\ & \mathrm{NO} \end{aligned}$	TO		T0		T0		revarn	REMARKS	
\bigcirc	141	26	7	P10	6	J8	6								BATt TO SUBPANEL	
$\stackrel{\text { ¢ }}{\sim}$	142		5		8	P13	4								+5B TO PROG	
>	143		5		9	J7	2								+5B TO FRONT PAN.	
$\stackrel{ }{\circ}$	144		90	1	10	1	10								STD ADJ.	
入ิ	145		91	J4	-	P13	26								PPS TO REAR PAN.	
+	146		901	J8	8	J7	11									
$\stackrel{\text { 이 }}{ }$	147		7	P15	11	J8	3								BATT TO SUBPANEL	
0	148		7	1	11	1	4								"	
$\stackrel{\rightharpoonup}{\mathbb{\otimes}}$	149		92	J2	1	P6	29								LATCH-BKO	
\pm	150		ϕ		2	J9	26								DIPLEX GND	
\bigcirc	151		90		3	J7	3								FORWARD POWER	
三	152		91	1	4	1	4								REFLECTED POWER	
0	153		7	P10	7	P3	29								$\begin{aligned} & \text { CHASSIS GND FROM } \\ & 1024 \mathrm{TO} 4011 \end{aligned}$	
Z	154	\checkmark	0	J2	5	E1									$\begin{aligned} & \text { CHASSIS GND FROM } \\ & 1024 \mathrm{TO} 4011 \end{aligned}$	
8																
\bigcirc																
$\frac{\cong}{\mathrm{O}}$																
\bigcirc																
$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\stackrel{\rightharpoonup}{\oplus}}$											$\left[\begin{array}{c} 802 \\ \mathbf{A} \end{array}\right.$	33783			1024-1007	Rev C
															SHEET 12 Of 12	

$\stackrel{\widetilde{\otimes}}{\stackrel{\sim}{\sim}}$	$\underset{\substack{\text { WIRE } \\ \mathrm{NE} \\ \hline}}{ }$	$\underset{\substack{1 \text { TEM } \\ \mathrm{Ne} \\ \hline}}{ }$	$\begin{array}{\|c} 8 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & \text { FROM } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { PIN } \\ \mathrm{NO} \\ \hline \end{array}$	$\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PN } \\ \mathrm{NO} \\ \hline \end{array}$	T0	$\begin{array}{\|c\|c\|} \hline \mathrm{NN} \\ \mathrm{MO} \\ \hline \end{array}$	то	$\begin{array}{\|c\|} \hline \mathrm{PN} \\ \mathrm{NO} \\ \hline \end{array}$	T0	$\begin{array}{\|c\|c\|} \hline P a n \\ \text { Men } \end{array}$	Hemers	REMARKS	
	1			XU1	B	C6	+								SMALL CAPS	
$\begin{aligned} & 0 \\ & \mathbb{N} \\ & \underline{0} \end{aligned}$	2			1	C	1	-								REGULATOR SOCKETS	
	3			XU2	B	C7	+								DO NOT SOLDER AT	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	4			1	C	1	-								THIS TIME	
	5			xu3	B	C8	+									
	6			\downarrow	C	1	-									
	7			XU4	B	C9	+									
	8			1	C	1	-									
\%	9			XU5	B	C10	+									
$\stackrel{+}{+}$	10			1	C	1	-									
\bigcirc	11			XU6	B	C11	+									
\cdots	12			I	C	1	-									
0	13			XU1	E	C12	+									
Z	14			1	C	I	-									
	15			XU2	E	C13	+									
8	16			1	C	\downarrow	-									
$\frac{\cong}{\mathrm{O}}$																
$\begin{aligned} & \underset{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$																
											$\begin{aligned} & \text { ske } \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & \text { Cobe wain le } \\ & 33783 \\ & \hline \end{aligned}$		$W L$	1024-1009	ReV A
															$\left.\right\|_{\text {SHEET }}$	

	$\begin{array}{\|c\|c\|} \hline \text { wne } \\ \hline \end{array}$	$\begin{aligned} & 17 \mathrm{TEM} \\ & \text { Ne } \end{aligned}$	8	FROM DEVICE	$\begin{aligned} & \mathrm{PIN} \\ & \mathrm{NO} \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { DEVICE } \end{aligned}$	$\begin{array}{\|l\|} \hline P 4 N \\ \mathrm{NO} \\ \hline \end{array}$	то	$\begin{array}{\|l\|} \hline \text { PNO } \\ \mathrm{NO} \\ \hline \end{array}$	T0	$\left\lvert\, \begin{aligned} & \mathrm{Pm} \\ & \mathrm{NO} \\ & \hline \end{aligned}\right.$	70	PNO	Levorn	REMARKS		
$\stackrel{\sim}{\sim}$	33		5	T1		E1									GREEN	GND	
\%	34	26	0	E1		CR1	-										
$\stackrel{\square}{7}$	35		1	1		CR2	-										
$\stackrel{\text { N }}{\substack{0}}$	36		1	CR1	+			OPEN*						2^{\prime}	+5 C TO		
$\stackrel{\square}{\square}$	37		209	CR2	+			OPEN*						$2 '$	TO C2+		
	38	\square	0	XU1	C			E1									
		27	1	XU3	C	XU4	C	1		XU6	C						
	39	1				XU1	B	XU2	B	XU3	B				+11. V U		
$\frac{0}{\stackrel{0}{\Phi}}$	40																
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\omega}$	41	26	0	CR3	-	E1											
O,	42		31	1	+			OPEN*						2^{\prime}	TO C3+		
crorr	43		0	CR4	+	E1											
$\bar{\infty}$	44		609	1	-			OPEN*						$2{ }^{\prime}$	TO C4-		
$\stackrel{+}{8}$	45		0	CR5	-	E1											
$\stackrel{1}{8}$	46	\checkmark	8	\downarrow	+			OPEN*						$2{ }^{\prime}$	TO C5+		
\%	47			XU6	E	C17	+										
$\begin{aligned} & \text { 그 } \\ & \text { O} \end{aligned}$																	
$\stackrel{\mathbb{D}}{\stackrel{\text { O}}{0}}$	*OP	EN =	NO	TERMIN	TED												
®											$\sqrt{82 \pi}$	$\begin{aligned} & \text { coret } \\ & 337 \end{aligned}$	$\begin{aligned} & 7 \mathrm{ke} \\ & \hline 3 \end{aligned}$	${ }^{\text {WWGR }}$	$1024-$		$\begin{array}{\|l} \mathrm{kivV} \\ \mathrm{~A} \end{array}$
																EET 4	

ग$\stackrel{\text { ® }}{\sim}$	$W_{\text {wing }^{\prime}}$	$\underset{\substack{1 \mathrm{TEM} \\ \mathrm{Ne}}}{ }$	$\begin{aligned} & \hline 8 \\ & \mathbf{0} \\ & \hline \end{aligned}$	FROM DEVICE	$\begin{array}{\|l\|} \hline \text { PIN } \\ \mathrm{NO} \\ \hline \end{array}$	device	$\begin{array}{\|l\|} \hline \mathbf{P N} \\ \mathrm{NO} \\ \hline \end{array}$	TO	$\begin{array}{\|l\|} \hline P N \\ \mathrm{Ne} \\ \hline \end{array}$	TO	$\begin{array}{\|c\|} \hline \text { PNON } \\ \text { No } \end{array}$	TO	$\begin{aligned} & \text { PNR } \\ & \mathrm{NR} \end{aligned}$	ymats	REMARKS	
	64	-	9	T1				OPEN*								
\%	65	-	90	T1												
	66	-	0	T1				1								
	67	26	0	XU2	C	E1									DO NOT DA	AIN
$\stackrel{\rightharpoonup}{\circ}$	68		1	XU5	B	E1									1	
$\stackrel{+}{\square}$	69		9	J1	A	XF1	1								AC TO FUS	
$\begin{aligned} & \overline{8} \\ & 0 \end{aligned}$	70		9	XF1	2			OPEN*						2 '	TO FL1-1	
	71		5	J1	B	E1										
$\begin{aligned} & \underline{0} \\ & \stackrel{\rightharpoonup}{D} \end{aligned}$	72		0	J1	C			OPEN*						2 '	TO FL1-2	
$\stackrel{\rightharpoonup}{c}$	73			E1		P14	1									
$\stackrel{\mathrm{O}}{\mathrm{O}}$	74					${ }^{J 6}$	1									
\cdots	75						2									
$\frac{\infty}{z}$	76						3									
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{1}{8} \\ & 0 \\ & 0 \end{aligned}$	77	\square	\downarrow	I		1	4									
$\frac{0}{\circ}$																
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	*OPEN $=$ NOT TERMINATED AT THIS TIME															
											\mathbf{A}	$\begin{aligned} & \text { cose wentre } \\ & \mathbf{3 3 7 8 3} \end{aligned}$		$\left.\right\|^{\text {DWG HES }}$	1024-1009	$\begin{aligned} & \text { REN } \\ & \text { A } \end{aligned}$

Power Supply Assy (5018-1002) (Sheet 1 of 6) (S/N 400100 and before)

Power Supply Assy (5018-1002) (Sheet 2 of 6) (S/N 400100 and before)

\%mat	Seame		orios		nemass
	${ }_{\text {aram }}^{\text {cara }}$		${ }_{8}$		
\cdots	${ }^{\text {ams }}$		${ }_{8}$		

Power Supply Assy (5018-1002) (Sheet 3 of 6) (S/N 400100 and before)

6-94

Power Supply Assy (5018-1002) (Sheet 4 of 6) (S/N 400100 and before)

Power Supply Assy (5018-1002) (Sheet 5 of 6) (S/N 400100 and before)

Wextima	Sekice	${ }_{\text {pup }}^{\text {pup }}$	oevice	${ }_{\text {dup }}^{\text {pup }}$		пемапкя
	сR2		${ }_{5}$			
$8{ }^{82}{ }^{\circ}$	с83		${ }_{\text {crs }}$			
${ }^{83} \times 0$	${ }_{82}$		${ }^{\text {® }}$			
∇						
$\square{ }^{\square}$						

Power Supply Assy (5018-1002) (Sheet 6 of 6) (S/N 400100 and before)

Filter Set Assy (4011-1004) (Sheet 1 of 2) (S/N 400100 and before)

Filter Set Assy (4011-1004) (Sheet 2 of 2) (S/N 400100 and before)

APPENDIX A
REFERENCES

DA Pam 310-1

DA Pam 733-750
TB SIG 291

TM 11-5820-884-13

TM 11-5820-884-23P

TM 11-5820-917-13

TM 11-5820-917-23P

TM 11-5820-918-23P

TM 11-5985-371-12-HR

TM 11-5985-371-12\&P

Consolidated Index of Army Publications and Blank Forms.

The Army Maintenance Management System.
Safety Measures to be Observed When Installing and Using Whip Antennas, Field Type, Masts, Towers, Antennas and Metal Poles That Are Used With Communications, Radar and Direction Finder Equipment.

Operator's, Organizational and Direct Support Maintenance Manual for Spectrum Monitor Radio Receiver R-2093/TRQ-35(V) Model RSS-4 (NSN 5820-01-038-9119).

Organizational and Direct Support Maintenance Repair Part and Special Tools List for Spectrum Monitor Radio Receiver R-2093/TRQ-35(V) Model RSS-4 (NSN 5820-01-038-911S\}.

Operator's, Organizational and Direct Support Maintenance Manual for Radio Receiver R-2081/TRQ-35(v) Model RCS-4B (NSN 5820-01-005-4247).

Organizational and Direct Support Maintenance Repair Parts and Special Tools List for Radio Receiver R-2081/TRQ-35 (V) Model RCS-4B (NSN 5820-01-005-4247).

Organizational and Direct Support Maintenance Repair Parts and Special Tools List for Radio Transmitter T-1373/TRQ-35 (V) Model TSC-4B (NSN 5820-01-005-4248).

Hand Receipt Manual Covering Contents of Components of End Item (COEI) and Additional Authorization List (AAL) for Antenna AS-3577/GRC (NSN 5985-01-148-1778).

Operator's and Organizational Maintenance Manual (Including Repair Parts and Special Tools List) for Antenna AS-3577/GRC (NSN 5985-01-148-1778).

TM 11-6625-3136-12

TM 11-6625-3136-24P

TM 11-6625-3136-40
TM 750-244-2

```
Operator's and Organizational Maintenance for Spectrum Analyzer AN/USM-489(V)1 (NSN 6625-01-079-9495).
Organizational, Direct Support and General Support Maintenance Repair Parts and Special Tools List for Spectrum Analyzer AN/USM-489(V)1 (NSN 6625-01-079-9495).
General Support Maintenance for Spectrum Analyzer AN/USM-489 (V) 1 (NSN 6625-01-079-9495).
Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command).
```


APPENDIX B

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

B-1. General

This appendix provides a summary of the maintenance operations for the T-1373/TRQ-35 (V). It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

B-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean (decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.
d. Adjust. To maintain, within prescribed limits, by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipments used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.
h. Replace. The act of substituting a serviceable like type part, subassembly, or module (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, test, service, agjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item, or system.
j. Overhaul. That maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (i.e., DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipments/components.

B-3. Column Entries
a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies, and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
C. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for purpose of having the group numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a "work time" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at $t h e$ indicated category of maintenance. If the number or complexity of the task within the listed maintenance function vary at different maintenance categories, appropriate "work time" figures will be shown for each category. The number of task-hours specified by the "work time" figure represents the average time required to restore an item (assembly, subassembly, component, module end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

B-2

C- Operator/Crew
O- Organizational
F- Direct Support
H- General Support
D- Depot
e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.
f. Column 6, Remarks. Column 6 contains an alphabetic code which leads to the remark in section IV, Remarks, which is pertinent to the item opposite the particular code.

B-4. Tool and Test Equipment Requirements (Sect. III)
a. Tool or Test Equipment Reference Code. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test equipment.
c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National/NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test equipment.
e. Tool Number. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers (5-digit) in parentheses.

D-5. Remarks (Sect. IV)
a. Reference Code. This code refers to the appropriate item in section II, column $\overline{6}$.
b. Remarks. This column provides the required explanatory information necessary to clarify items appearing in section II.

SECTION II MAINTENANCE ALLOCATION CHART
FOR
TRANSMITTER, RADIO T-1373/TRQ-35(V)

8-4

SECTION II MAINTENANCE ALLOCATION CHART FOR

TRANSMITTER, RADIO T-1373/TRQ-35(V)

TRANSMITTER, RADIO T-1373/TRQ-35(V)

Section I. INTRODUCTION

C-1. Scope
This appendix lists integral components of and basic issue items for the T-1373/TRQ-35(V) to help you inventory items required for safe and efficient operation.

C-2. General

This Components of End Item List is divided into the following sections:
a. Section II. Integral Components of the End Item. These items, when assembled, comprise the $T-1373 / T R Q-35(V)$ and must accompany it whenever it is transferred or turned in. The illustrations will help you identify these items.
b. Section III. Basic Issue Items. Not applicable.

C-3. Explanation of Columns
a. Illustration. This column is divided as follows:
(1) Figure number. Indicates the figure number of the illustration on which the item is shown.
(2) Item number. The number used to identify item called out in the illustration.
b. National Stock Number. Indicates the National stock number assigned to the-item and which will be used for requisitioning.
C. Part Number. Indicates the primary number used by the manufacturer, which controls the design and characteristics of the item by means of its engineering drawings, specifications, standards, and inspection requirements to identify an item or range of items. Following the part number, the Federal Supply Code for manufacturers (FSCM) is shown in parentheses.
d. Description. Indicates the Federal item name and, if required, a minimum description to identify the item.
e. Location. The physical location of each item listed is given in this column. The lists are designed to inventory all items in one area of the major item before moving on to an adjacent area.
f. Usable on Code. Not applicable.
g. Quantity Required (Qty Reqd). This column lists the quantity of each item required for a complete major item.
1.h. Quantity. This column is left blank for use during an inventory. Under the Rcvd column, list the quantity you actually receive on your major Ditem. The Date columns are for your use when you inventory the major item at a later date; such as for shipment to another site.
(Next printed page is $\mathrm{C}-3$)

APPENDIX D
ADDITIONAL AUTHORIZATION LIST

Section I. INTRODUCTION
D-1. Scope
This appendix lists additional items you are authorized for the support of the T-1373/TRQ-35 (V).

D-2. General

This list identifies items that do not have to accompany the $\mathrm{T}-1373 / \mathrm{TRQ}-35(\mathrm{~V})$ and that do not have to be turned in with it. These items are all authorized to you by CTA, MTOE, TDA, or JTA.

D-3. Explanation of Listing
National stock numbers, descriptions, and quantities are provided to help you identify and request the additional items you require to support this equipment. The items are listed in alphabetical sequence by item name under the type document (i.e., CTA, MTOE, TDA, or JTA) which authorizes the item(s) to you.

SECTION II ADDITIONAL AUTHORIZATION LIST

TM 11-5820-918-13

FIGURE FO 1. 1024 and 5018 block

FIGURE FO-1. 1024 and 5018 Block Diagram (S/N 400100 and before) (Sheet 2ot 3).

TM 11-5820-918-13

FIGURE FO-1. 1024 and 5018 Block Diagram (applicable to Units with Sweep Synthesizer P/N 5030-1101) (Sheet 3 of 3).

FIGURE FO-2. 4011 Block Diagram.

FIGURE FO- 3. Schematic Diagram, 5 MHz Buffer ($6061-2001$) (S/N 400101 and on).

4. All inductors are in millihenrys.
3. ALL CAPACITORS ARE IN MICROFARADS.
2. ALL RESISTORS ARE IN OHMS $1 / A W \pm 5 \%$.

1. REFERENC DESIGNATIONS ARE ABBREVIATED PREFIX THE DESIGNATOR WITH UNIT, OR ASSY DESIGNATOR.

NOTES: UNLESS OTHERWISE SPECIFIED.

HIGHEST REFERENCE DESIGNATION								
C 3	CR1	ES	L2	QI	R4	UI		
REF OESIGNATION NOT USED								

EL9tFO28

FIGURE FO-4. Schematic Diagram, Switch Regulator (6061-2002) (S/N 400101 and on).

6.) WI THRU W22 JUMPERS INSTALLED
5. T1, t2 a t3 watkins johnson balanceo TRANSFORMERS BTE. ALL DIODES ARE IN 4148
all capacitors are in microfarads
ALL RESISTORS ARE IN OHMS $1 / 4 \mathrm{~W}, \pm 5 \%$, PARTIAL REEERENCE DESIGNATIONS ARE SHOWN;
FOR COMPLETE DESIGNATION PREFIX WITH FOR COMPLETE DESIGNATION PREFIX WITH
UNIT NUMEER OR SUBASSY DESIGNATION.
NOTES: UNLESS OTHERWISE SPECIFIED.

FIGURE FO-5. Schematic Diagram, Synthesizer Converter (5030-2001) (Sheet 1 of 6).

TM 11-5820-918-13

TM 11-5820-918-13

FIGURE FO-5. Schematic Diagram,
Synthesizer Converter (5030-2001) (Sheet 4 of 6).

FIGURE FO-5. Schematic Diagram,
Synthesizer Converter (5030-2001)
(Sheet 5 of 6).

TM 11-5820-918-13

FIGURE FO-5. Schematic Diagram,
Synthesizer Converter (5030-2001)
(Sheet 6 of 6)

FIGURE FO-6. Schematic Diagram Microphase Synthesizer (5030-2002) (Sheet 1 of 5).

TM 11-5820-918-13

FIGURE FO-6. Schematic Diagram,
Microphase Synthesizer (5030-2002)
(Sheet 2 of 5).

[^2]

\qquad

FIGURE FO-8. Schematic Diagram,
FIGURE FO-8. Schematic Diagram,

FIGURE FO-10. Schematic Diagram,

FIGURE FO-10. Schematic Diagram,
Down Converter $\frac{\text { Schenatic Diagram, }}{5035} 2002$) (Sheet 3
of 3).

FI GURE FO-11. Sweep Programmer Block Diagram (5035-2003).

FIGURE FO-12. Schematic Diagram, Sweep Programmer (5035-2003) (Sheet 1 of 4).

FIGURE FO-12. Schematic Diagram, Sweep Programmer (5035-2003) (Sheet 4 of 4)

(6) Pin 14 of UIL is tied to ground on enrit units.
5. * denotes casting test point.

power oistribution				
Ref des	oevice	+5VA	+5v8	Gnd
U3, u9,(u2) (u2 ${ }^{\text {l }}$)	7 F (LS)00	14		$?$
U8	7930	14		7
U21	74159	24		12
U33	141592	16		8
(10), (19), U23. 225	$74 \mathrm{Clis)} 00$		19	$?$
u5, U6	7415196		14	$?$
016	74604		19	1
$\begin{aligned} & \text { v10, v11. v12, v17, u18, } \\ & 122, v 24, v 28, v 30 \end{aligned}$	$74{ }^{192}$		16	\bigcirc
U29, U34, U36	CD4050		1	8
026	7400	-	-	7
47	C04049		1	6

3. All Capacitiors dre in microfarads.
2. All RESISTORS ARE IN OHMS $1 / 4 \mathrm{w}, \pm 5 \%$

1. REFERENCE OESLGNAIONS AAEEABEREVIATED.

NOTES: UNLESS OTHERWISE SPELIFIED.

bhest reference desigmalion								
c29	CR9	F6	17	01	R48	TP 3	336	
- ref designation not useo								
						V2,15,15		

FIGURE FO-14. Schematic Diagram,
Programmer (1024-2008) (S/N 400101 and on) (Sheet 1 of 4).

FIGURE FO-14. Schematic Diagram, Programmer (1024-2008) (S/N 400101 and on) (Sheet 3 of 4).

FIGURE FO-14. Schematic Diagram
Programmer (1024-2008) (S/N 400101 and on) (Sheet 4 of 4).

FIGURE FO-15. Schematic Diagram, Frequency Count er/Blanker (1024-2009) (S/N 400101 and on) (Sheet 2 of 3)

tsuc

GNO

motes: unless otheawise specifieo

1. RI THRU RG3 ARE 120 OMms, $1 / 4 w, 5 \%$.
2. LEDS ARE LITRONIX DLTOT

CRI \& CRZ ARE RL SO.
EL9TF065

NOTES: UNLESS OTHERWISE SPECIFID.

1. RI thru r6s are 120 omms, $1 / 4 w, 5 \%$.
2. UI thru ue are 7447's.

(6.) U7, LAMBDA L-20-OV-15 OVERVOLTAGE PROTECTOR
3. PARTIAL REFERENCE DESIGNATIONSARE SHOWN; FOR COMPLETE DESIGNATION PREFIX IWITH
UNIT NUMBER OR SUBASSY DESIGNATION
4. U5 REQUIRES CASE insulating cover.

3 UI TO U6 REGULATORS MOUNTED ON rear panel heat sink.
2. CRI AND CR2 ARE 1910-0009.

CURRENTS AND VOLTAGES ARE NOMINAL FULL LOAD VALUES

NOTES:
EL9TF069

FIGURE FO-18. Schematic Diagram, 1024
Power Supply (1024-1007) (Sheet 1 of 2).

FIGURE FO-19. Schematic Diagram,
Rechargeable Battery Supply (6025-1018).

FIGURE FO-21. Schematic Diagram, 5018 Power Amplifier (5018-1001) (Sheet 3 of 4).

2. ALL CAPACITORS ARE IN MICROFARADS

1. REFERENCE designations are abbreviated PREFIX THE DESIGNATOR WITH UNIT OR ASS'Y DESIGNATOR 2A3A1

NOTES: UNLESS OTHERWISE SPECIFIED

EL9TF078

FIGURE FO-22. Schematic Diagram, Amplifier Enclosure (5018-1003).

FP-109/(FP-110 blank)

FIGURE FO-24. Schematic Diagram, 27 VDC Regulator for 5018 Power Supply (5018-1008).

FIGURE FO-25. Schematic Diagram, Filter Set Assy (4011-1004) (S/N 400101 and on) (Sheet 1 of 2).

6 COMPONENTS On NEXt ASSY 4911-1104.
DIODES CAT, 8, 10 ARD 12 ARE SELECTED FOR
GO dB OR BETER HAMONIC RESPONSE AT -60 WB OR BETER HARMONIC RESPONSE AT
4. ALL INDUCTORS ARE IN MICROHENRYS.
3. all capacitors are in picofaraos.
all resistors are in ohms $1 / 8 \mathrm{w}, \pm 1 \%$.
PAPTIAL REEERENCE DESIGNATIONS APE SHOWN;
FOR COMPLETE DE SIGHATIOA PREFIX WITH FOR COMPLETE DESIGNAIION PREFIX WITH
UNIT NUMBER OR SUBASSY DESIGNATION
NOTES:unless otherwise specified.

highest reference ofsignation						
C80	CR12	E 32	12	46	R 4	W1
ref designations not used						
C4. 664			J			

CCA 4011-2018

power distribution		
device	+5v	GND
74 (L5)(S) 00	14	7
$74 \mathrm{LSO4}$	14	7
74.510	14	?
741520	14	7
7490	14	7
741542	16	0
94L5112	16	-
7415175	16	θ
7415196	14	7
C64007	14	7
90102	16	8

FIGURE FO-27. Schematic Diagram, Filter Decode Assy (4011-1007) (Sheet 1 of 4).

FIGURE FO-27. Schematic Diagram,
Filter Decode Assy (4011-1007) (Sheet
4 of 4).

FIGURE FO-28. Schematic Diagram, Diplexer, Toroid Assy (4011-1005).

FIGURE FO-29. Schematic Diagram, 4011 Power Supply (4011-1008).

FIGURE FO-30. Schematic Diagram, 5 MHz Distributive Amplifier (6025-2008) (S/N 400100 and before).

FIGURE FO-31. Schematic Diagram, Switch Regulator (6025-2009) (S/N 400100 and before).

FIGURE FO-32. Schematic Diagram, Programmer (1024-2002) (S/N 400100 and before) (Sheet 2 of 2).

4. REFERENCE OESIGNATIONS ARE ABSREVIATED

PREFIX THE DESIGNATOR WITH UNIT OR
ASSEMBLY OESIGNATOR 2AZAZ.
3. FOR TERMINAL LOCATIONS, SEE 5018-1006.
2. FOR ASSEMBLY OWG, SEE 5018-1006

1. ALL RESISTORS ARE IN OMMS, $\pm 5 \%, 2$ W + CARBON COMPOSITION.

NOTES: UNLESS OTHERWISE SPECIFIED

3. FOR TERMINAL LOCATIONS, SEE 5018 -
2. FOR ASSEMBLY DWG, SEE 5018-1005.

- ALL, RESISTORS ARE IN OHMS, $\pm 5 \%, 1 / 4 \mathrm{~W}$
CARBON COMPOSITION CARBON COMPOSITION.
NOTES: UNLESS OTHERWISE SPECIFIED

$19>$

5. FOR ASSY SEE 5018-3040
6. REFERENCE DESIGNATION ARE ABBREVIATED. PREFIX THE DESIGNATOR WITH UNIT OR ASSEMBLY DESIGNATOR 2A2A4.
7. FOR TERMINAL LOCATIONS, SEE 5018-1002.
8. ALL CAPACITORS ARE IN MICROFARADS.
9. ALL RESISTORS ARE IN OHMS $, 5 \%, 1 / 4 \mathrm{~W}$ CARBON COMPOSITION.
NOTES: UNLESS OTHERWISE SPECIFIED

REF DESIGNATION NOT USED R21-30, R32, 34, 35,38

EL9TFO98
FIGURE FO-34. Schematic Diagram, 5018 Power Supply (5018-1002) (S/N 400100 and before) (Sheet 3 of 3).

NOTES:(UNLESS OTHERWISE SPECIFIED.)

1. all capacitors are in picofarados, inductors in microhenpies.
2. C1 TRUU CIZ AND L1 $\angle 2$ EACTORY SELECTED,
3. Ci thru cil are mica trpe, 500 V .
4. CIS IS CERAMIC TyPE.
5. REEERENCE DESIGNATIONS ARE ABbREVIATEO. PREFIX TME DESIGNATO
WiTh UNIT OR GSSY OESIGNATOR 3aIAI

$\because \quad 1$

Commander

US Army Communications-Electronics Command and Fort Monmouth
ATTN: AMSEL-ME-MP
Fort Monmouth, New Jersey 07703-5007
PREVIOUS EDITIONS are obsolete

AEVERSE OF DA FORW 2020-2

official eusiness
Commander 1US Army Communications-Electronics Command
and Fort Monmouth 1
ATTN: AMSEL-ME-MP 1
Fort Monmouth, New Jersey 07703-500711I

By Order of the Secretary of the Army:

Official:
JOHN A. WICKHAM JR. General, United States Army Chief of Staff

MILDRED E. HEDBERG

Brigadier General, United States Army The Adjutant General

Distribution:
To be distributed in accordance with special list.

[^0]: Frequency Standard Assy (6025-1006) (Sheet 2 of 2) (S/N 400101 and on)

[^1]: Rear Panel Assy (1024-1009) (Sheet 5 of 5) (S/N 400101 and on)

[^2]: FIGURE FO-6. Schematic Diagram,
 FIGURE FO-6. Schematic Diagram,
 Microphase Synthesizer (5030-2002)
 (Sheet 5 of 5).

